\(\left(x+\sqrt{x^2+2010}\right)\left(y+\sqrt{y^2+2010}\right)=2010\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

Đặt \(a=2010\).

\(\Leftrightarrow\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\)(*)

Nhân cả 2 vế của (*) cho \(\sqrt{x^2+a}-x\), ta có:

\(\left(x+\sqrt{x^2+a}\right)\left(\sqrt{x^2+a}-x\right)\left(y+\sqrt{y^2+a}\right)=a\left(\sqrt{x^2+a}-x\right)\)

\(\Leftrightarrow\left(x^2+a-x^2\right)\left(y+\sqrt{y^2+a}\right)=a\left(\sqrt{x^2+a}-x\right)\)

\(\Leftrightarrow a\left(y+\sqrt{y^2+a}\right)=a\left(\sqrt{x^2+a}-x\right)\)

\(\Leftrightarrow y+\sqrt{y^2+a}=\sqrt{x^2+a}-x\) (1)

Tương tự tiếp tục nhân (*) cho \(\sqrt{y^2+a}-y\), ta có:

\(x+\sqrt{x^2+a}=\sqrt{y^2+a}-y\) (2)

Cộng 2 vế (1) và (2), ta được:

\(S=y+\sqrt{y^2+a}+x+\sqrt{x^2+a}=\sqrt{x^2+a}-x+\sqrt{y^2+a}-y\)

\(S=y+x+x+y=\sqrt{x^2+a}+\sqrt{y^2+a}-\sqrt{y^2+a}-\sqrt{x^2+a}\)

\(S=2x+2y=0\)

\(S=x+y=0\)

10 tháng 11 2016

gt pt nó thành nhân tử thay vào P tính

10 tháng 11 2016

mk nhớ lm bài tương tự thế này r` bn chịu khó mở ra xem lại ở đây olm.vn/?g=page.display.showtrack&id=424601&limit=260, ấn vào chữ Trang tiếp theo để tìm thêm nhé

2 tháng 9 2018

Đặt \(a=\sqrt{2010}\) . Ta có: \(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\)  (*)

Nhân cả hai vế của (*) với \(\sqrt{x^2+a}-x\) ,ta đc:

\(\left(x+\sqrt{x^2+a}\right)\left(\sqrt{x^2+a}-x\right)\left(y+\sqrt{y^2+a}\right)=a\left(\sqrt{x^2+a}-x\right)\)

\(\Leftrightarrow\left(x^2+a-x^2\right)\left(y+\sqrt{y^2+a}\right)=a\left(\sqrt{x^2+a}-x\right)\)

\(\Leftrightarrow a\left(y+\sqrt{y^2+a}\right)=a\left(\sqrt{x^2+a}-x\right)\)

\(\Leftrightarrow y+\sqrt{y^2+a}=\sqrt{x^2+a}-x\)  (1)

Tương tự nhân cả hai vế của (*) với \(\sqrt{y^2+a}-y\) ,ta đc:

\(x+\sqrt{x^2+a}=\sqrt{y^2+a}-y\)  (2)

Cộng 2 vế của (1) và (2),ta đc S = x + y = 0

=.= hok tốt!!

15 tháng 5 2017

theo đề bài \(\left(x+\sqrt{x^2+2010}\right)\left(y+\sqrt{y^2+2010}\right)=2010\)

\(\left(\sqrt{x^2+2010}+x\right)\left(\sqrt{x^2+2010}-x\right)=2010\)

nên \(\sqrt{x^2+2010}-x=\sqrt{y^2+2010}+y\)

hay \(x+y=\sqrt{x^2+2010}-\sqrt{y^2+2010}\) (1)

Tương tự \(\left(\sqrt{y^2+2010}+y\right)\left(\sqrt{y^2+2010}-y\right)=2010\)

nên \(\sqrt{x^2+2010}+x=\sqrt{y^2+2010}-y\)

hay \(x+y=\sqrt{y^2+2010}-\sqrt{x^2+2010}\) (2)

Từ (1) và (2) suy ra S = x + y = 0.

17 tháng 5 2016

ta có:

\(x\left(\sqrt{2011}+\sqrt{2010}\right)+y\left(\sqrt{2011}-\sqrt{2010}\right)=x\sqrt{2011}+x\sqrt{2010}+y\sqrt{2011}-y\sqrt{2010}\)

 pt tương đương với:

\(\left(x+y\right)\sqrt{2011}+\left(x-y\right)\sqrt{2010}=\sqrt{2011^3}+\sqrt{2010^3}\)

vì x,y là số hữu tỉ nên

\(\hept{\begin{cases}\sqrt{2011}\left(x+y\right)=\sqrt{2011^3}\\\sqrt{2010}\left(x-y\right)=\sqrt{2010^3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=2011\\x-y=2010\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{4021}{2}\\y=\frac{1}{2}\end{cases}}\)   

                                                                                               

17 tháng 5 2016

tích trước trả lời sau

30 tháng 8 2019

E hổng biết cách này có đúng ko nữa:((

5

Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)

\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )

Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)

12 tháng 10 2015

 

\(\left(x+\sqrt{x^2+2010}\right)\left(y+\sqrt{y^2+2010}\right)=2010\)

\(\Leftrightarrow\left(x+\sqrt{x^2+2010}\right)\left(\sqrt{x^2+2010}-x\right)\left(y+\sqrt{y^2+2010}\right)=2010\left(\sqrt{x^2+2010}-x\right)\)

\(\Leftrightarrow y+\sqrt{y^2+2010}=\sqrt{x^2+2010}-x.\left(1\right)\)

Tương tự:\(x+\sqrt{x^2+2010}=\sqrt{y^2+2010}-y.\left(2\right)\)

Cộng vế với vế của \(\left(1\right)và\left(2\right)\Rightarrow x+y=-x-y\Leftrightarrow x+y=0.\)

KL:\(x+y=0.\)

 

 

1 tháng 1 2018

hình như à x+y chứ ko phải là x+1

3 tháng 1 2018

là x+1 nhưng mk giải đc rồi

13 tháng 2 2019

\(\hept{\begin{cases}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2010}\end{cases}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}}\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+y+z\right)+xy}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+z\right)+y\left(z+x\right)}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(z+y\right)=0\)

<=> x+y = 0 hoặc x+z=0 hoặc z+y=0

<=> x = -y hoặc x = -z hoặc z = -y

\(\Rightarrow P=\left(x^{2007}+y^{2007}\right)\left(y^{2009}+z^{2009}\right)\left(z^{2009}+x^{2009}\right)=0\)