\(x^2\)

tính A=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

Ta có : \(M=\left(7x+7y\right)+\left(x+\frac{4}{x}\right)+\left(2y+\frac{50}{y}\right)\)

\(\ge7\left(x+y\right)+2\sqrt{x.\frac{4}{x}}+2\sqrt{2y.\frac{50}{y}}\)

\(\ge7.7+4+20=73\)

Dấu "=" xảy ra khi x = 2; y = 5

4 tháng 5 2019

Dự đoán điểm rơi tại x = y = 2/3 ta sẽ làm như sau

\(A=x+y+\frac{1}{x}+\frac{1}{y}\)

    \(=\left(\frac{9x}{4}+\frac{1}{x}\right)+\left(\frac{9y}{4}+\frac{1}{y}\right)-\frac{5}{4}\left(x+y\right)\)

     \(\ge2\sqrt{\frac{9x}{4x}}+2\sqrt{\frac{9y}{4y}}-\frac{5}{4}.\frac{4}{3}=\frac{13}{3}\)

    Dấu "=" tại x = y = 2/3

4 tháng 5 2019

Cách khác là UCT (không hay như cách kia đâu=)

Ta sẽ chứng minh: \(x+\frac{1}{x}\ge-\frac{5}{4}x+3\)

\(\Leftrightarrow\frac{\left(3x-2\right)^2}{4x}\ge0\) (đúng)

Thiết lập tương tự BĐT còn lại và cộng theo vế ta được: \(VT\ge-\frac{5}{4}\left(x+y\right)+6\ge-\frac{5}{4}.\frac{4}{3}+6=\frac{13}{3}\)

Dấu "=" xảy ra khi 3x - 2 = 3y - 2 = 0 tức là x = y = 2/3

4 tháng 6 2019

Ta có

\(P=\frac{3}{4}x+\frac{1}{x}+\frac{2}{y^2}+y\)

  \(=\left(\frac{1}{x}+\frac{x}{4}\right)+\left(\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}\right)+\frac{1}{2}\left(x+y\right)\)

  \(\ge2\sqrt{\frac{1}{x}.\frac{x}{4}}+3\sqrt[3]{\frac{2}{y^2}.\frac{y}{4}.\frac{y}{4}}+\frac{1}{2}.4=1+\frac{3}{2}+2=\frac{9}{2}\)

Vậy MInP=9/2 khi \(\hept{\begin{cases}\frac{1}{x}=\frac{x}{4}\\\frac{2}{y^2}=\frac{y}{4}\\x+y=4\end{cases}\Rightarrow}x=y=2\)

19 tháng 9 2019

\(K=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}+24xy-20xy\)

\(\ge\frac{4}{\left(x+y\right)^2}+12-\frac{20\left(x+y\right)^2}{4}=11\)

Check xem có sai chỗ nào ko:v

19 tháng 9 2019

Trời! Chứng minh vậy đọc ai hiểu được chời :)))

Vì \(\frac{1}{x^2+y^2}+\frac{1}{2xy}=\frac{1^2}{x^2+y^2}+\frac{1^2}{2xy}\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}=\frac{4}{\left(x+y\right)^2}\)

\(\frac{3}{2xy}+24xy\ge2\sqrt{\frac{3}{2xy}.24xy}=12\)

Lại quên dấu bằng xảy ra kìa em. 

"=" xảy ra <=> x=y=1/2

18 tháng 7 2016

21. Phân tích A thành \(A=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a^2+b^2+c^2+ab+bc+ac\right)\). Từ đó dễ dàng chứng minh.

18 tháng 7 2016

23. \(9y\left(y-x\right)=4x^2\Leftrightarrow9y^2-9xy=4x^2\Leftrightarrow4x^2+9xy-9y^2=0\)

Chia cả hai vế của đẳng thức trên với \(y^2>0\)được : 

\(4\left(\frac{x}{y}\right)^2+\frac{9x}{y}-9=0\). Đặt \(t=\frac{x}{y},t>0\)(Vì x,y dương)

\(\Rightarrow4^2+9t-9=0\Leftrightarrow\orbr{\begin{cases}t=\frac{3}{4}\left(\text{nhận}\right)\\t=-3\left(\text{loại}\right)\end{cases}}\)

Vậy \(\frac{x}{y}=\frac{3}{4}\Rightarrow y=\frac{4x}{3}\)thay vào biểu thức được :

\(\frac{x-y}{x+y}=\frac{x-\left(\frac{4x}{3}\right)}{x+\left(\frac{4x}{3}\right)}=-\frac{1}{7}\)

23 tháng 1 2018

t lắm tắt luôn nhé có nhiều  câu quá 

áp dụng bdt cô si ta có

a)  \(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{1.xyz}{xyz}}=4\)

vậy Min của T là 4 dấu = xảy ra khi x=y=z=1

b)  

áp dụng BDT cosi ta có

\(x+y+Z\ge3\sqrt[3]{xyz}\)

\(\frac{3}{xyz}+3xyz\ge2\sqrt{\frac{3.3xyz}{xyz}}=6\)

+ vế với vế ta được

\(T+3xyz\ge3\sqrt[3]{xyz}+6\)

\(T\ge3\sqrt[3]{xyz}+6-3xyz\)

có  \(xyz\le\frac{\left(x+y+Z\right)^2}{27}\Rightarrow-xyz\ge-\frac{\left(x+y+z\right)^2}{27}\) cùng dấu > thay vào được

\(T\ge3\sqrt[3]{xyz}+6-3\frac{\left(x+y+z\right)^3}{27}\)

Có \(x^2+1\ge2x\)

       \(y^2+1\ge2y\)

      \(z^2+1\ge2z\)  (cosy)

+ vế với vế ta được

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

\(3\ge\left(x+y+z\right)\Rightarrow-\left(x+y+z\right)\ge-3\) cùng dấu > ta thay được 

\(\Rightarrow T\ge3\sqrt[3]{xyz}+6-3\frac{\left(3\right)^3}{27}\)

\(\Rightarrow T\ge6\) dấu = xảy ra khi x=y=z=1

3) dự đoán của chúa pain x=y=z = \(\frac{1}{\sqrt{3}}\)

thử thay vào

\(\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\frac{1}{\sqrt{3}^3}}\)

số xấu lắm m tự làm đi tương tự câu 1) 2) 

23 tháng 1 2018

1)  dự đoán của chúa Pain x=y=z=1 

áp dụng BDT cô si ta có

\(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{xyz}{xyz}}=4.\)

Vậy Min là 4 dấu = xảy ra khi x=y=z=1

2  chia cả tử cả mẫu cho  \(x^2+y^2+z^2=3\) ta được

\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{3}{xyz}\)

thay số ta được

\(\left(x+y+z+\frac{x}{yz}+\frac{z}{xy}+\frac{y}{zx}\right)\)

áp dụng Cô si ta được

\(VT\ge6\sqrt[6]{\frac{x^2y^2z^2}{y^2z^2x^2}}=6\)

vậy Min là 6 dấu = xảy ra khi x=y=z=1

3) TƯỢNG TỰ cậu 2

chia xyz cho 2 vế 

\(x^2+y^2+z^2=1\)

ta được

\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{1}{xyz}\)

thay số

\(\left(x+y+z\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\)

áp dụng BDT cô si ta được

\(\left(\frac{x}{\frac{1}{\sqrt{3}^2}}+\frac{y}{\frac{1}{\sqrt{3}^2}}+\frac{x}{\frac{1}{\sqrt{3}^2}}\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\ge....\)

tự làm

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!