K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

\(x^2+y=y^2+x\Leftrightarrow\left(x^2-y^2\right)-\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x+y\right)-\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x+y=1\end{cases}}\)

Vì x,y là hai số khác nhau nên loại trường hợp x = y. Vậy x + y = 1 => y = 1 - x

thay vào A : \(A=\frac{x^2+\left(1-x\right)^2+x\left(1-x\right)}{x\left(1-x\right)-1}=\frac{x^2-x+1}{-x^2+x-1}=-1\)

14 tháng 1 2018

Có : 3x^2-y^2 = 2xy

<=> 3x^2-2xy-y^2 = 0

<=> (3x^2-3xy)+(xy-y^2) = 0

<=> (x-y).(3x+y) = 0

<=> x-y=0 hoặc 3x+y=0

<=> x=y hoặc y=-3x

Đến đó bạn thay y bởi x theo từng trường hợp rùi  tính giá trị của P nha

Tk mk nha

3 tháng 6 2021

đưa nó vế dạng a^3 + b^3 + c^3 = 3abc

3 tháng 6 2021

Ta có :

    \(x^3\) + \(y^3\) - xy = \(-\dfrac{1}{27}\)

⇔ \(x^3\) + \(y^3\) - xy + \(\dfrac{1}{27}\) = 0

⇔  \(x^3\) + \(y^3\) + \(\dfrac{1^3}{3^3}\) - 3xy.\(\dfrac{1}{3}\) = 0

⇔ (x + y + \(\dfrac{1}{3}\))(\(x^2\) + \(y^2\) + \(\dfrac{1}{9}\) - xy - \(\dfrac{1}{3}x-\dfrac{1}{3}y\)) = 0

TH1 :

x + y + \(\dfrac{1}{3}\) = 0

⇔ x + y = - \(\dfrac{1}{3}\) (loại vì x>0 ; y>0)

TH2 :

\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)\(\dfrac{1}{3}x-\dfrac{1}{3}y\)

⇔ (\(x-\dfrac{1}{3}\))\(^2\) + (\(y-\dfrac{1}{3}\))\(^2\) + (x - y)\(^2\) = 0

⇒ \(x-\dfrac{1}{3}\) = 0       

    \(y-\dfrac{1}{3}\) = 0

    \(x-y\) = 0

⇔ x = y = \(\dfrac{1}{3}\)

Thay x = y = \(\dfrac{1}{3}\) vào \(\dfrac{x}{y^2}\) ta được :

   \(\dfrac{1}{3}\) : \(\dfrac{1}{9}\)

\(\dfrac{1}{3}\) . 9

= 3

\(\dfrac{1}{3}\)\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Lời giải:
Đặt $xy=a; x+y=b$ thì theo đề ta có:

$a+b=-1$ và $ab=-12$

Ta cần tính: $A=(x+y)^3-3xy(x+y)=b^3-3ab=b^3-3(-12)=b^3+36$
 

Từ $a+b=-1\Rightarrow a=-b-1$. Thay vào $ab=-12$
$\Rightarrow (-b-1)b=-12$
$\Leftrightarrow (b+1)b=12$

$\Leftrightarrow b^2+b-12=0$

$\Leftrightarrow (b-3)(b+4)=0$
$\Leftrightarrow b=3$ hoặc $b=-4$
Nếu $b=3$ thì $A=3^3+36=63$

Nếu $b=-4$ thì $A=(-4)^3+36=-28$

11 tháng 12 2016

đề sai 

k kết quả

11 tháng 12 2016

đúng mà