\(x^3\)+ \(^{y^3}\)=xy - <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

x^3+y^3=xy-1/27

<=>(x^3+y^3+1/27)-xy=0

<=>(x^3+y^3+z^3)-3.x.y.1/3 = 0

<=> (x+y+1/3).(x^2+y^2+1/9-xy-1/3x-1/3y) = 0 [đã học để phân tích a^3+b^3+c^3-3abc = (a+b+c).(a^2+b^2+c^2-ab-bc-ca)]

<=> x+y+1/3=0 hoặc x=y=1//3 ( cũng đã học trường hợp a^3+b^3+c^3-3abc = 0 <=> a+b+c = 0 hoặc a=b=c )

=> x=y=1/3 ( vì x,y < 0 )

Khi đó thay x+y vào rùi tính P

k mk nha

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

1 tháng 2 2017

B1:x^2+2016=xy+yz+xz+x^2=...

tuong tu

y^2+2016=... ; z^2+2016=....

B2:bdt am-gm

8 tháng 8 2019

Cho 2 số thực x,y khác 0 thay đổi và thỏa mãn: $(x+y)xy=x^{2}+y^{2}-xy$ .Tìm GTLN của $A=\frac{1}{x^{3}}+\frac{1}{y^{3}}$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

14 tháng 8 2019

dễ thế makk ko bt

25 tháng 4 2019

Biến đổi từ giả thiết

\(x^3+y^3+6xy\le8\)

\(\Leftrightarrow...\Leftrightarrow\left(x+y-2\right)\left(x^2-xy+y^2+2x+2y+4\right)\le0\)

\(\Leftrightarrow x+y-2\le0\)

(Do \(x^2-xy+y^2+2x+2y+4=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}+2x+2y+4>0\forall x;y>0\))

\(\Leftrightarrow x+y\le2\)

Và áp dụng các bđt \(\frac{1}{2ab}\ge\frac{2}{\left(a+b\right)^2}\)

                                 \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(a;b>0\right)\)

Khi đó \(P=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(\frac{1}{ab}+ab\right)+\frac{3}{2ab}\)

               \(\ge\frac{4}{a^2+b^2+2ab}+2+\frac{6}{\left(a+b\right)^2}\)

                 \(=\frac{4}{\left(a+b\right)^2}+2+\frac{6}{\left(a+b\right)^2}\ge\frac{9}{2}\)

Dấu "=" <=> a= b = 1

29 tháng 7 2019

Ta có \(\sqrt{3x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+z\right)\left(x+y\right)}\ge\sqrt{xy}+\sqrt{xz}\)(BĐT buniacoxki)

=>\(VT\le\frac{x}{x+\sqrt{xz}+\sqrt{xy}}+\frac{y}{y+\sqrt{yx}+\sqrt{yz}}+\frac{z}{z+\sqrt{zx}+\sqrt{yz}}\)

=> \(VT\le\frac{\sqrt[]{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

21 tháng 10 2017

\(\frac{x}{3-yz}+\frac{y}{3-zx}+\frac{z}{3-xy}\le\frac{x}{3-\frac{y^2+z^2}{2}}+\frac{y}{3-\frac{z^2+x^2}{2}}+\frac{z}{3-\frac{x^2+y^2}{2}}\)

\(=\frac{2x}{3+x^2}+\frac{2y}{3+y^2}+\frac{2z}{3+z^2}\le\frac{2x}{4\sqrt[4]{x^2}}+\frac{2y}{4\sqrt[4]{y^2}}+\frac{2z}{4\sqrt[4]{z^2}}\)

\(=\frac{\sqrt{x}}{2}+\frac{\sqrt{y}}{2}+\frac{\sqrt{z}}{2}\le\frac{x^2+3}{8}+\frac{y^2+3}{8}+\frac{z^2+3}{8}\)

\(=\frac{3}{8}+\frac{9}{8}=\frac{3}{2}\)

21 tháng 10 2017

cách khác: cũng đến chỗ <= sigma 2x/3+x^2 

<= 2x/2(x+1) (do x^2+3=x^2+1+2>=2x+2) <= sigma x/x+1 = 3- sigma (1/x+1) 

sigma 1/x+1 >= 9/x+y+z+3 dễ rồi

12 tháng 8 2016

Yêu cầu chứng minh  \(B\ge1\)  là đáp án đúng cho bài toán này. 

Không giải!

12 tháng 8 2016

Dễ thấy đề sai nếu cho x = y = 1 .

7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3 

2 tháng 1 2017

Áp dụng bất đẳng thức Cosi với 2 số thực không âm ta có: 

 \(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}\)

 \(y\sqrt{1-z^2}\le\frac{y^2+1-z^2}{2}\)

 \(z\sqrt{1-x^2}\le\frac{z^2+1-x^2}{2}\)

=>\(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\le\frac{x^2+1-y^2}{2}+\frac{y^2+1-z^2}{2}+\frac{z^2+1-x^2}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x^2=1-y^2;y^2=1-z^2;z^2=1-x^2\)

Cộng vế với vế của các đẳng thức với nhau ta được: \(x^2+y^2+z^2=1-y^2+1-z^2+1-x^2=3-\left(x^2+y^2+z^2\right)\)

<=>\(2\left(x^2+y^2+z^2\right)=3\Leftrightarrow x^2+y^2+z^2=\frac{3}{2}\)(đpcm)