Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+2y2-2xy-2y-2x+5=0
<=>(x2-2xy+y2-2x+2y+1)+(y2-4y+4)=0
<=>(x-y-1)2+(y-2)2=0
Do (x-y-1)2\(\ge\)0
(y-2)2\(\ge\)0
=>Phương trình tương đương \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)
\(x^2+2y^2-2xy-2y-2x+5=0\)
\(\Leftrightarrow\left(x^2-2xy-2x+y^2+2y+1\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(y-2\right)^2=0\)
Dễ thấy: \(\left\{{}\begin{matrix}\left(x-y-1\right)^2\ge0\ge x,y\\\left(y-2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-y-1\right)^2+\left(y-2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\forall\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)
=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)
^_^
\(Q=x^2+6y^2-2xy-12x+2y+2017\)
\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)
\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)
\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)
Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)
\(\Rightarrow Q>0\)
|------------| Tuổi em trước đây
|------------|------------| Tuổi anh trước đây
|------------|------------| Tuổi em hiện nay
|------------|------------|------------| Tuổi anh hiện nay
Coi tuổi em trước đây là 1 phần thì tuổi anh trước đây hay tuổi em hiện nay là 2 phần như thế. Hiện nay tuổi em gấp đôi tuổi em trước đây tức là tuổi em tăng thêm 1 phần thì tuổi anh cũng tăng thêm 1 phần như thê
=> Tuổi em hiện nay là 2 phần thì tuổi anh là 3 phần
Tổng số phần bằng nhau là
2+3=5 phần
Giá trị 1 phần là
60:5=12 tuổi
Tuổi em hiện nay là
2x12=24 tuổi
Tuổi anh là
60-24=36 tuổi
\(x^2-2x+y^2+4y+5=0\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
Mà \(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x;y\)
Dầu "=" xảy ra<=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
a: \(A=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{2\left(x-3\right)}{2-x}\)
\(=\dfrac{4+4x+x^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\cdot\dfrac{2-x}{2\left(x-3\right)}\)
\(=\dfrac{5x^2+4x+4-4+4x-x^2}{\left(2+x\right)}\cdot\dfrac{1}{2\left(x-3\right)}\)
\(=\dfrac{4x^2+8x}{x+2}\cdot\dfrac{1}{2\left(x-3\right)}=\dfrac{4x\left(x+2\right)}{2\left(x+2\right)}\cdot\dfrac{1}{x-3}=\dfrac{2x}{x-3}\)
b: |x-2|=2
=>x-2=2 hoặc x-2=-2
=>x=0(nhận) hoặc x=4(nhận)
Khi x=0 thì \(A=\dfrac{2\cdot0}{0-3}=\dfrac{-2}{3}\)
Khi x=4 thì \(A=\dfrac{2\cdot4}{4-3}=8\)
c: A>0
=>x/x-3>0
=>x>3 hoặc x<0
=>x>3
theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)
A=\(\dfrac{x-y}{x+y}\)
=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)
=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)
vì y>x>0=> A=-1/2
\(x^2+xy-2y^2=0< =>\left(x-y\right)\left(x+2y\right)=0< =>\)x=y (vì x+2y>0 với x;y>0)
A= (2013x2+2x2)(2014x2+2x2) = 2015.2016.x4