\(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\).Tìm GT...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 4 2019

Lời giải:
Vì $y^2\geq 0$ với mọi $y$ nên:

\((x+y)^2+7(x+y)+10=-y^2\leq 0\)

\(\Leftrightarrow (x+y)^2+2(x+y)+5(x+y)+10\leq 0\)

\(\Leftrightarrow (x+y)(x+y+2)+5(x+y+2)\leq 0\)

\(\Leftrightarrow (x+y+5)(x+y+2)\leq 0\)

\(\Rightarrow -5\leq x+y\leq -2\)

\(\Rightarrow -4\leq x+y+1\leq -1\)

Vậy \(A_{\min}=-4\Leftrightarrow \left\{\begin{matrix} x+y=-5\\ y^2=0\end{matrix}\right.\Leftrightarrow (x,y)=(-5,0)\)

\(A_{\max}=-1\Leftrightarrow \left\{\begin{matrix} x+y=-2\\ y^2=0\end{matrix}\right.\Leftrightarrow (x,y)=(-2,0)\)

16 tháng 4 2019

cho cháu hỏi sao thầy ( cô) ko bỏ (x+y)2 luôn vậy ạ vì nó luôn luôn \(\ge\)0

23 tháng 2 2020

Làm phần min trước, Max để mai:

Ta chứng minh \(P\ge\frac{18}{25}\).

*Nếu x = 0 thì \(y^2=\frac{1}{2}\Rightarrow P=\frac{7}{4}>\frac{18}{25}\)

*Nếu x khác 0. Xét hiệu hai vế ta thu được:

bzMIzRW.png\(\ge0\)

P/s: Nên rút gọn cái biểu thức cuối cùng lại cho nó đẹp và khi đó ta không cần xét 2 trường hợp như trên:D

23 tháng 2 2020

Cách khác đơn giản hơn:

Đặt \(x+y=a;xy=b\Rightarrow a^2\ge4b\)

\(\Rightarrow2a^2-1=5b\) rồi rút thế các kiểu cho nó thành 1 biến là xong:D (em nghĩ vậy thôi chứ chưa thử)

6 tháng 9 2016

Ta có : \(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)

\(\Leftrightarrow\left(x+y\right)^2+2\left(x+y\right)+1+5\left(x+y+1\right)+y^2+4=0\)

\(\Leftrightarrow\left(x+y+1\right)^2+5\left(x+y+1\right)+y^2+4=0\)

Đặt t = x+y+1

Suy ra \(t^2+5t+y^2+4=0\)

Xét \(\Delta=25-4\left(4+y^2\right)=9-4y^2\) . Để pt có nghiệm thì \(\Delta\ge0\Rightarrow y^2\le\frac{9}{4}\)

Giả sử pt có hai nghiệm : t1 < t2 . Do đó GTNN của A xảy ra tại t1

Khi đó : \(t_1=\frac{-5-\sqrt{9-4y^2}}{2}\ge\frac{-5-\sqrt{9}}{2}=-4\)

Suy ra \(A\ge-4\) . Vậy Min A = -4 <=> y = 0 => x = -5

7 tháng 9 2016

x, y là 2 số thực dương mà chị ?

27 tháng 6 2018

Đặt \(x+\sqrt{1+x^2}=a\Rightarrow a-x=\sqrt{1+x^2}\Rightarrow a^2-2ax+x^2=1+x^2\)

=> \(a^2-1=2ax\Rightarrow x=\frac{1}{2}\left(a-\frac{1}{a}\right)\)

Tương tự, đặt \(y+\sqrt{1+y^2}=b\Rightarrow y=\frac{1}{2}\left(b-\frac{1}{b}\right)\)

=> x+y=\(\frac{1}{2}\left(a+b-\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{2}\left(a+b-\frac{3}{3a}+\frac{3}{3b}\right)=\frac{1}{2}\left(a+b-\frac{1}{3}a-\frac{1}{3}b\right)\)(vì ab=3)

=\(\frac{1}{2}.\frac{2}{3}\left(a+b\right)=\frac{1}{3}\left(a+b\right)\)

Mà \(\left(a+b\right)^2\ge2ab=6\Rightarrow a+b\ge\sqrt{6}\Rightarrow\frac{1}{3}\left(a+b\right)\ge\frac{\sqrt{6}}{3}\)

dấu = xảy ra <=> a=b<=> x=y bạn tự thay vào và tự tìm nhá 

^_^

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

16 tháng 11 2016

Bài 1:

\(P=x\sqrt{3-x^2}=\sqrt{x^2}\cdot\sqrt{3-x^2}\)

\(=\sqrt{x^2\left(3-x^2\right)}\)\(\le\frac{x^2+3-x^2}{2}=\frac{3}{2}\)

Dấu = khi \(x=\sqrt{\frac{3}{2}}\)

Vậy MaxP=\(\frac{3}{2}\Leftrightarrow x=\sqrt{\frac{3}{2}}\)

2 tháng 8 2020

Bài 2 : 

Tìm min : Bình phương 

Tìm max : Dùng B.C.S ( bunhiacopxki )

Bài 3 : Dùng B.C.S

2 tháng 8 2020

KP9

nói thế thì đừng làm cho nhanh bạn ạ

Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích