Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét: \(x+y+z=xyz\Leftrightarrow\frac{x+y+z}{xyz}=1\)
\(\Leftrightarrow\frac{x}{xyz}+\frac{y}{xyz}+\frac{z}{xyz}=1\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)
Mặt khác:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)<=>\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\left(\sqrt{3}\right)^2\)
<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}=3\)
<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)=3\)
<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2.1=3\)
<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2=3\)
<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Theo đề bài, ta có:
\(x^3+y^3=x^2-xy+y^2\)
hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)
+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)
+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)
Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3