Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Em chỉ biết chữa lại thôi chứ không biết tìm lỗi sai =_=. Anh/chị thông cảm ạ.
Lời giải:
Lời giải trên chưa chính xác.
*Chữa lại:
\(M=\left(\frac{4}{x}+9x\right)+y-9x\ge12+y-9x\)
\(\ge12+y-9\left(1-\frac{1}{y}\right)=12+y-9+\frac{9}{y}\)
\(=3+\left(y+\frac{9}{y}\right)\ge3+2\sqrt{y.\frac{9}{y}}=9\)
Dấu "=" xảy ra khi \(x=\frac{2}{3};y=3\)
Vậy ....
![](https://rs.olm.vn/images/avt/0.png?1311)
Cho a, b, c mà bắt chứng minh x, y, z nên ko chứng minh đc là đúng òi:)
\(VT-VP=\Sigma_{cyc}\frac{\left(x-y\right)^4}{4xy\left(x^2+y^2\right)}\ge0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Sigma\frac{x^3}{y^2}=\Sigma\frac{x}{y^2}\left(x-y\right)^2+\frac{\Sigma z\left(x^3-yz^2\right)^2}{xyz\left(x+y+z\right)}+\Sigma\frac{x^2}{y}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
\(\Leftrightarrow\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\ge0\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\)
\(\Rightarrow Q.E.D\)
Dấu "=" xảy ra khi a=b
\(gt\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=6\)
Đặt \(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\)thì \(P=a^2+b^2+c^2\)và \(a+b+c+ab+bc+ca=6\)
Giải:
Ta có: \(x^2+1\ge2\sqrt{x^2\cdot1}=2x\)
Tương tự rồi cộng theo vế ta được: \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(1)
Lại có: \(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)(2)
Cộng (1), (2) theo vế ta được:
\(3P+3\ge2\left(x+y+z+xy+yz+zx\right)=2\cdot6=12\)
\(\Rightarrow3P\ge9\Leftrightarrow P\ge3\)
MinP = 3 khi a = b = c = 1 hay x = y = z = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\Rightarrow ayz+bxz+cxy=0\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) (\(a;b;c\ne0\) )
\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1-2\left(\frac{ayz+bxz+cxy}{abc}\right)=1-2.0=1\)
=> đpcm
á em đổi biến lộn ạ. Em định viết H;U;Y cho đúng tên mình mà quen tay lộn vào Y;Z ạ
Đặt \(\left(\frac{x}{a};\frac{y}{b};\frac{z}{c}\right)\rightarrow\left(H;U;Y\right)\)
Khi đó ta có:
\(H+U+Y=1;\frac{1}{H}+\frac{1}{U}+\frac{1}{Y}=0\Rightarrow HU+UY+YH=0\)
Thay vào thì :
\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=\left(H+U+Y\right)^2-2\left(HU+UY+YH\right)=1\)
Vậy ta có đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\)
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}-\frac{x}{y}-\frac{y}{x}\)
\(=\frac{x^2-xy}{y^2}+\frac{y^2-xy}{x^2}\)
\(=\frac{x^4-x^3y+y^4-xy^3}{x^2y^2}\)
\(=\frac{x^3\left(x-y\right)-y^3\left(x-y\right)}{x^2y^2}\)
\(=\frac{\left(x-y\right)^2\left(x^2+xy+y^2\right)}{x^2y^2}\)