Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Ta có:}\frac{x}{y+1}+\frac{y}{x+1}=\frac{x^2+x+y^2+y}{\left(x+1\right)\left(y+1\right)}\)
\(=\frac{\left(x+y\right)^2-2xy+1}{xy+x+y+1}=\frac{1-2xy+1}{xy+2}\)
\(=\frac{2-2xy}{2+xy}\)
\(\text{Vì }2-2xy\le2+xy\left(do\text{ x,y không âm}\right)\text{ nên }\frac{2-2xy}{2+xy}\le1\)
\(=>\frac{x}{y+1}+\frac{y}{x+1}\le1\)
x,y,z không âm thỏa mãn
\(1\ge\frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+3}\ge\frac{9}{x+y+z+6}\Leftrightarrow x+y+z\ge3\)
\(P=\frac{a+b+c}{9}+\frac{1}{a+b+c}+\frac{8\left(a+b+c\right)}{9}\ge2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
P min = 10/3 khi a+b+c = 3
Ta có: \(x+\left(y+1\right)\ge2.\sqrt{x.\left(y+1\right)}=2.\sqrt{xy+x}\)
\(y+\left(x+1\right)\ge2.\sqrt{y.\left(x+1\right)}=2.\sqrt{xy+y}\)
\(1+\left(x+y\right)\ge2.\sqrt{x+y}\)
Ta có: \(\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y}{x+1}}+\sqrt{\frac{1}{x+y}}\)
\(=\frac{\sqrt{x}}{\sqrt{y+1}}+\frac{\sqrt{y}}{\sqrt{x+1}}+\frac{1}{\sqrt{x+y}}\)
\(=\frac{x}{\sqrt{yx+x}}+\frac{y}{\sqrt{xy+y}}+\frac{1}{\sqrt{x+y}}\)
\(=\frac{2x}{2\sqrt{yx+x}}+\frac{2y}{2\sqrt{xy+y}}+\frac{2}{2\sqrt{x+y}}\)
\(\ge\frac{2x}{x+y+1}+\frac{2y}{x+y+1}+\frac{21}{x+y+1}=\frac{2\left(x+y+1\right)}{x+y+1}=2\)
đpcm
Tham khảo nhé~
\(1=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{z}\right)+\frac{1}{2}\left(\frac{y}{z}+\frac{z}{x}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{y}\right)\)
\(\ge\sqrt{\frac{x}{y}.\frac{y}{z}}+\sqrt{\frac{y}{z}.\frac{z}{x}}+\sqrt{\frac{z}{x}.\frac{x}{y}}=VP\) (rút gọn lại thôi:v)
Theo AM-GM , có :
\(x+y\ge2\sqrt{xy}\)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\)
Nhân vế theo vế :
\( \left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Có:x+y =1 => (x+y)2 = 1 => x2 + y2 = 1-2xy
\(\frac{x}{y+1}+\frac{y}{x+1}=\frac{x\left(x+1\right)+y\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\frac{x^2+x+y^2+y}{yx+y+x+1}=\frac{1-2xy+1}{yx+2}\)\(=\frac{2-2xy}{2+yx}\)
Vì x,y không âm
=> \(-xy\le xy\)
=> \(-2xy\le xy\)
=>\(2-2xy\le2+xy\)
=> \(\frac{2-2xy}{2+xy}\le1\)
=> đpcm