Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x/y+y/x=x^2+y^2/xy sử dụng bdt cosi =>x^2+y^2/xy+xy/x^2+y^2>=1
ta có: \(M=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\ge2\sqrt{\frac{x^2+y^2}{xy}\cdot\frac{xy}{x^2+y^2}}=2\cdot\sqrt{1}=2\cdot1=2.\)
(Ở đây mình áp dụng BĐT Cauchy: \(a+b\ge2\sqrt{ab}\)nhé!)
Học tốt! ^3^
M=9/xy+17/(x^2+y^2)=17/(x^2+y^2)+17/2xy+1/2xy=17.(1/x^2+y^2 + 1/2xy) + 1/2xy
Áp dụng bđt cauchy dạng 1/a+1/b >/ 4/(a+b) và ab </ [(a+b)/2]^2
Ta có M >/ 17.4/16^2 + 1/2.8^2 = 35/128=>minM=35/128
Đẳng thức xảy ra <=> x=y=8
ta đi chứng minh \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)(tự chứng minh nhé, nhân chéo lên xong phân tích ra nó sẽ ra (a-b)^2/ab lớn hơn bằng 0)
\(M=\frac{18}{2xy}+\frac{17}{x^2+y^2}\ge\frac{17.4}{\left(x+y\right)^2}+\frac{1}{2xy}\)
Chứng minh được \(2xy\le\frac{\left(x+y\right)^2}{2}\forall x,y>0\)
\(\Rightarrow M\ge\frac{68}{16^2}+\frac{2}{\left(x+y\right)^2}=\frac{17}{64}+\frac{2}{16^2}=\frac{35}{128}\)
Đẳng thức xảy ra <=> x=y=8
Áp dụng BĐT AM-GM ta có:
\(1=\frac{3}{x}+\frac{2}{y}\ge2.\sqrt{\frac{6}{xy}}\)
\(\Leftrightarrow1^2\ge4.\frac{6}{xy}\)
\(\Leftrightarrow1\ge\frac{24}{xy}\)
\(\Leftrightarrow xy\ge24\)
Dấu " = " xảy ra \(\Leftrightarrow\frac{3}{x}=\frac{2}{y}=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x=6\\y=4\end{cases}}\)
Vậy \(xy_{min}=24\Leftrightarrow\hept{\begin{cases}x=6\\y=4\end{cases}}\)
T nghĩ ra câu b rồi nhé Pain,bớt xạo lz!
b) Từ \(\frac{3}{x}+\frac{2}{y}=1\),ta có: \(x+y=1\left(x+y\right)=\left(\frac{3}{x}+\frac{2}{y}\right)\left(x+y\right)\)
Áp dụng BĐT Bunhiacopxki,ta có: \(\left(\frac{3}{x}+\frac{2}{y}\right)\left(x+y\right)\ge\left(\sqrt{\frac{3}{x}.x}+\sqrt{\frac{2}{y}.y}\right)\)
\(=\left(\sqrt{3}+\sqrt{2}\right)^2=5+2\sqrt{6}\)
Vậy \(Min_{x+y}=5+2\sqrt{6}\Leftrightarrow\hept{\begin{cases}x=3+\sqrt{6}\\y=2+\sqrt{6}\end{cases}}\)
Bài này thì chắc cô si ngược dấu thôi:v
\(LHS=\Sigma\frac{x}{1+y^2}=\Sigma x.\left(1-\frac{y^2}{1+y^2}\right)\)
\(\ge\Sigma x\left(1-\frac{y}{2}\right)=x+y+z-\frac{xy+yz+zx}{2}\)
\(\ge x+y+z-\frac{\left(x+y+z\right)^2}{6}=\frac{3}{2}\)
P/s: check xem có ngược dấu chỗ nào ko:v
Ta có: \(M=\frac{9}{xy}+\frac{17}{x^2+y^2}\)
\(=\frac{18}{2xy}+\frac{17}{x^2+y^2}\)
\(=\left(\frac{17}{x^2+y^2}+\frac{17}{2xy}\right)+\frac{1}{2xy}\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(x,y>0), ta có:
\(M\ge\frac{17.4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=\frac{68}{256}+\frac{2}{256}=\frac{35}{128}\)
Dấu "=" xảy ra khi: \(x=y=8\)