Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=3\left(9x^2-12x+4\right)+\frac{8x}{1-x}=27x^2-36x+12+\frac{8x}{1-x}\)
\(=27x^2-36x+4+\frac{8}{1-x}=27x^2-18x-6+8\left(1-x\right)+\frac{8}{1-x}\)
\(=27x^2-18x+3+8\left(1-x\right)+\frac{8}{1-x}-9\)
\(=3\left(3x-1\right)^2+8\left(1-x\right)+\frac{8}{1-x}-9\)
\(\Rightarrow VT\ge2\sqrt{8^2}-9=7\)
Dấu " = " xảy ra khi \(x=\frac{1}{3}\)
\(VT=27x^2-36x+12+\frac{8x}{y}\)
\(=\frac{8x}{1-x}+18x\left(1-x\right)+45x^2-54x+12\)
\(\ge45x^2-54x+12+24x\)
\(=45x^2-30x+12=5\left(9x^2-6x+\frac{12}{5}\right)\)
\(=5\left[\left(3x-1\right)^2+\frac{7}{5}\right]\ge7\)
Dấu = khi \(x=\frac{1}{3};y=\frac{2}{3}\)
\(VT=3\left(9x^2-12x+4\right)+\frac{8x}{1-x}=27x^2-36x+12+\frac{8x}{1-x}\)
\(=27x^2-36x+4+\frac{8}{1-x}=27x^2-18x-6+8\left(1-x\right)+\frac{8}{1-x}\)
\(=27x^2-18x+3+8\left(1-x\right)+\frac{8}{1-x}-9\)
\(=3\left(3x-1\right)^2+8\left(1-x\right)+\frac{8}{1-x}-9\)
\(\Rightarrow VT\ge2\sqrt{8^2}-9=7\)
Dấu "=" xảy ra khi \(x=\frac{1}{3}\)
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
Cho y ở đề bài làm gì trong khi biểu thức ở vế trái bên dưới ko có y?
à là \(\frac{8x}{y}\)đó