\(\frac{\left(X+Y\right)^2}{X^2+Y^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

\(S=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}=1+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{xy}+2\)

                                                              \(\ge3+2\sqrt{\frac{2xy}{x^2+y^2}.\frac{x^2+y^2}{xy}}=3+2\sqrt{2}\)

Đẳng thức xảy ra <=> x = y 

14 tháng 5 2018

sai rồi

NV
28 tháng 4 2019

\(S=\left(x+y\right)^2\left(\frac{1}{x^2+y^2}+\frac{1}{xy}\right)=\left(x+y\right)^2\left(\frac{1}{x^2+y^2}+\frac{4}{4xy}\right)\)

\(S\ge\left(x+y\right)^2\frac{\left(1+2\right)^2}{x^2+y^2+4xy}=\frac{9\left(x+y\right)^2}{\left(x+y\right)^2+2xy}\ge\frac{9\left(x+y\right)^2}{\left(x+y\right)^2+\frac{\left(x+y\right)^2}{2}}=6\)

\(\Rightarrow S_{min}=6\) khi \(x=y\)

5 tháng 5 2020

Đặt S=\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{x^2+2xy+y^2}{xy}=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{x^2+y^2}{xy}+2\)

Áp dụng BĐT Cosi ta có: \(x+y\ge2\sqrt{xy}\Leftrightarrow xy< \frac{\left(x+y\right)^2}{4}\)

Do đó \(S\ge\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{4\left(x^2+y^2\right)}{\left(x+y\right)^2}+2\ge2\sqrt{\frac{\left(x+y\right)^2}{x^2+y^2}\cdot\frac{4\left(x^2+y^2\right)}{\left(x+y\right)^2}}+2=6\)

Dấu "=" xảy ra <=> x=y

Vậy MinS=6 đạt được khi x=y

5 tháng 5 2020

Ta có: 

\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)

\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)

\(\ge\left(x+y\right)^2.\frac{4}{\left(x+y\right)^2}+\frac{4xy}{2xy}=6\)

Dấu "=" xảy ra <=> x = y 

Vậy min \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)= 6 đạt tại x = y.

1 tháng 7 2017

AM-GM thôi :))

\(M=1+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{xy}+2=3+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}+\frac{x^2+y^2}{2xy}\)

Áp dụng BĐT AM-GM:

\(\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}\ge2\sqrt{\frac{2xy}{x^2+y^2}.\frac{x^2+y^2}{2xy}}=2\)

\(\frac{x^2+y^2}{2xy}\ge\frac{2xy}{2xy}=1\)

\(\Rightarrow VT\ge3+2+1=6\)

Dấu = xảy ra khi x=y

31 tháng 5 2017

\(S=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)

\(=1+\frac{2xy}{x^2+y^2}+2+\frac{x^2+y^2}{xy}\)

\(=3+\left(\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}\right)+\frac{x^2+y^2}{2xy}\)

\(\ge3+2+\frac{2xy}{2xy}=6\)

Dấu = xảy ra khi \(x=y\)

1 tháng 6 2017

tks bạn

2 tháng 6 2016

=> P = 2*2^2 - 6*1 + 9*1/2^2

=> P = 8 - 6 + 9/4

=> P= 17/4

2 tháng 6 2016

=> P = 2*2^2 - 6*1 + 9*1/2^2

=> P = 8 - 6 + 9/4

=> P = 17/4

15 tháng 5 2016

Toán lớp 9