\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

Giả sử : \(y=ax\) 

Thay vào giả thiết : \(\frac{ax}{x+ax}+\frac{2\left(ax\right)^2}{x^2+\left(ax\right)^2}+\frac{4\left(ax\right)^4}{x^4+\left(ax\right)^4}+\frac{8\left(ax\right)^8}{x^8-\left(ax\right)^8}=4\)

\(\Leftrightarrow\frac{x.a}{x.\left(a+1\right)}+\frac{x^2.2a^2}{x^2\left(1+a^2\right)}+\frac{x^4.4a^4}{x^4\left(1+a^4\right)}+\frac{x^8.8a^8}{x^8\left(1-a^8\right)}=4\)

\(\Leftrightarrow\frac{a}{a+1}+\frac{2a^2}{a^2+1}+\frac{4a^4}{a^4+1}+\frac{8a^8}{1-a^8}=4\)

Tới đây bạn giải ra , tìm a rồi thay vào y = ax  là ra :)

6 tháng 4 2020

Bài làm:

7 tháng 4 2020

Em làm cách này được không ạ?!

Với \(x\ne\pm y\), ta có: \(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4\left(x^4-y^4\right)+8y^8}{\left(x^4-y^4\right)\left(x^4+y^4\right)}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^2\left(x^4+y^4\right)}{\left(x^4-y^4\right)\left(x^4+y^4\right)}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4-y^4}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2\left(x^2-y^2\right)+4y^4}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2\left(x^2+y^2\right)}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2-y^2}=4\)

\(\Leftrightarrow\frac{y\left(x-y\right)+2y^2}{\left(x-y\right)\left(x+y\right)}=4\)

\(\Leftrightarrow\frac{y\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}=4\)

\(\Leftrightarrow\frac{y}{x-y}=4\)

\(\Leftrightarrow y=4x-4y\Leftrightarrow5y=4x\left(đpcm\right)\)

6 tháng 4 2020

Ta có: \(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\forall x\ne\pm y\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4\left(x^4-y^4\right)+8y^8}{\left(x^4-y^4\right)\left(x^4+y^4\right)}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4-y^2}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2\left(x^2-y^2\right)+4y^4}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2-y^2}=4\)

\(\Leftrightarrow\frac{y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=4\)

\(\Leftrightarrow\frac{y}{x-y}=4\)

\(\Leftrightarrow y=4x-4y\)

\(\Leftrightarrow5y=4x\left(đpcm\right)\)

18 tháng 9 2016

Độ dài cạnh của tam giác bằng 7 cm và 13 cm

Mà tam giác này cân

=> Cạnh còn lại của tam giác là 7 cm ( Dựa vào bất đẳng thức tam giác 0

Chu ci tam giác là :

   7 + 13 + 7 = 27 ( cm )

Vậy chu vi tam giác đó là ; 27 cm

18 tháng 9 2016

TH1:Cạnh đáy bằng 7 cm 

Chu vi của hình tam cân đó là :

13x2+7=33(cm)

TH2:Cạnh đáy bằng 13 cm

Chu vi của hình tam giác cân đó là :

7x2+13=27(cm)

8 tháng 12 2018

x.y=4 chắc chắn đúng