K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

a, Áp dụng bđt cosi ta có :

2xy.(x^2+y^2) < = (2xy+x^2+y^2)^2/4 = (x+y)^4/4 = 2^4/4 = 4

<=> xy.(x^2+y^2) < = 2

=> ĐPCM

Dấu "=" xảy ra <=> x=y=1

Vậy ............

Tk mk nha

11 tháng 3 2018

b, Có : x.y < = (x+y)^2/4 = 2^2/4 = 1

<=> 2xy < = 2

Ta có : 1/x^2+y^2 + 1/xy = 1/x^2+y^2 + 1/2xy + 1/2xy >= \(\frac{9}{x^2+y^2+2xy+2xy}\)

\(\frac{9}{\left(x+y\right)^2+2xy}\)

< = \(\frac{9}{2^2+2}\)= 3/2

=> ĐPCM

Dấu "=" xảy ra <=> x=y=1

8 tháng 8 2019

chào bạn. tôi nghĩ rằng bạn đủ thông minh để làm nên tích đi đã r tôi sẽ giúp @*

9 tháng 3 2021
Tôi nghĩ Minh nói đúng đấy,bạn đủ thông minh để làm đấy
22 tháng 2 2020

\(x+y=1\Rightarrow2\sqrt{xy}\le1\Rightarrow\sqrt{xy}\le\frac{1}{2}\)

\(\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{1}{xy}\ge4\)

Áp dụng bđt cauchy cho 3 số dương:

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{xy}\ge3\sqrt[3]{\frac{1}{x^2}.\frac{1}{y^2}.\frac{1}{xy}}=3.\frac{1}{xy}\ge3.4=12\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

21 tháng 3 2021

Tìm GTLN:

Xét hiệu $2.(x^2+y^2)-(x+y)^2=2.(x^2+y^2)-x^2-y^2-2xy=x^2-2xy+y^2=(x-y)^2 \geq 0$

Nên $(x+y)^2 \leq 2.(x^2+y^2)=2$ (do $x^2+y^2=1$)

Dấu $=$ xảy ra $⇔(x-y)^2=0;x^2+y^2=1⇔x=y;x^2+y^2=1⇔x=y=\dfrac{1}{\sqrt[]2}$

Tìm Min:

Có $(x+y)^2 \geq 0$ với mọi $x;y$

Dấu $=$ xảy ra $⇔(x+y)^2=0;x^2+y^2=0⇔x=-y;x^2+y^2=1⇔x=\dfrac{1}{\sqrt[]2};y=-\dfrac{1}{\sqrt[]2}$ và hoán vị