\(x^4+y^4+\dfrac{1}{xy}=xy+2\) . Tìm Min, Max của...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2019

\(x^4+y^4+\dfrac{1}{xy}=xy+2\)

\(\Leftrightarrow\left(x^2-y^2\right)^2=xy-\dfrac{1}{xy}+2-2x^2y^2\ge0\)

Đặt \(xy=a\)

\(\Rightarrow-2a^3+a^2+2a-1\ge0\)

\(\Leftrightarrow\left(a+1\right)\left(a-1\right)\left(1-2a\right)\ge0\)

Ta có a > 0

\(\Rightarrow\left(a-1\right)\left(2a-1\right)\le0\)

\(\Rightarrow\dfrac{1}{2}\le a\le1\) \(\Rightarrow.......\)

3 tháng 1 2021

\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0=>x^2+y^2\ge2xy\\\left(x+y\right)^2\ge0=>x^2+y^2\ge-2xy\end{matrix}\right.\)

Ta có:

\(\left\{{}\begin{matrix}2\left(x^2+y^2\right)+xy\ge5xy\\2\left(x^2+y^2\right)+xy\ge-3xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\ge5xy\\1\ge-3xy\end{matrix}\right.\)

\(\Leftrightarrow-\dfrac{1}{3}\le xy\le\dfrac{1}{5}\)

Ta có:

P=\(2\left(x^2+y^2\right)^2-4x^2y^2+2+\left(x^2+y^2+2xy\right)\)

P= \(\dfrac{2\left(1-xy\right)^2}{4}-4\left(xy\right)^2+2+\left(\dfrac{1-xy}{2}+2xy\right)\)

=\(\dfrac{\left(xy\right)^2-2xy+1}{2}-4\left(xy\right)^2+2+\dfrac{3xy}{2}+\dfrac{1}{2}\)

Đặt t = xy => \(-\dfrac{1}{3}\le t\le\dfrac{1}{5}\)

Ta có : 

P= \(\dfrac{-7t^2}{2}+\dfrac{t}{2}+3=-\dfrac{7}{2}\left(t-\dfrac{1}{14}\right)^2+\dfrac{169}{56}\)

Ta có: \(-\dfrac{1}{3}-\dfrac{1}{14}\le t-\dfrac{1}{14}\le\dfrac{1}{5}-\dfrac{1}{14}\)

<=>\(-\dfrac{17}{42}\le t-\dfrac{1}{14}\le\dfrac{9}{70}\)

=> 0\(\le\left(t-\dfrac{1}{14}\right)^2\le\left(\dfrac{17}{42}\right)^2\)

\(\dfrac{169}{56}\ge P\ge\dfrac{169}{56}-\dfrac{7}{2}\left(\dfrac{17}{42}\right)^2\)

Max P= \(\dfrac{169}{56}\) => t = 1/14 => \(xy=\dfrac{1}{14}\rightarrow x^2+y^2=\dfrac{13}{14}\) => x,y=...

Min P=\(\dfrac{169}{56}-\dfrac{7}{6}\left(\dfrac{17}{42}\right)^2\) <=> \(t=xy=-\dfrac{1}{3}\)

<=> x=-y=\(\dfrac{1}{\sqrt{3}}\) 

16 tháng 2 2020

Đặt \(x^2+y^2=a;xy=b\) \(\Rightarrow a-b=1\Leftrightarrow b=a-1\)

Từ giả thiết:\(x^2+y^2-xy=1\Leftrightarrow x^2+y^2+\left(x-y\right)^2=2\ge x^2+y^2\)

Và \(2x^2+2y^2=2xy+2\Leftrightarrow3\left(x^2+y^2\right)=\left(x+y\right)^2+2\ge2\)\(\Leftrightarrow x^2+y^2\ge\frac{2}{3}\)

Suy ra:\(\frac{2}{3}\le a\le2\)

Ta có:\(x^4+y^4-x^2y^2=\left(x^2+y^2\right)^2-3x^2y^2=a^2-3b^2=-2a^2+6a-3\)

Đến đây vẽ bảng biến thiên ra :)) 

5 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

29 tháng 12 2019

\(Ta \) \(có : x^2 +y^2 +xy = 1\)

\(\Leftrightarrow\)\(xy = 1 - x^2 - y^2\)

\(Thay \)  \(xy = 1 - x^2 - y^2 \)  \(vào \)  \(P , ta \) \(được :\)

\(P = 1 - x^2 -y^2\)

\(P = 1 - ( x^2 +y^2 )\)

\(P = - ( x^2 +y^2 )+ 1\)\(\le\)\(1\)

\(Dấu "=" xảy \) \(ra\)  \(\Leftrightarrow\)\(x^2+y^2 =0\)

\(\Leftrightarrow\)\(x = 0 \) \(và\)  \(y = 0\)

\(Max \)  \(P = 1 \)\(\Leftrightarrow\)\(x = 0 ; y = 0\)

23 tháng 8 2020

đặt \(\left(a;b;c\right)=\left(\sqrt{\frac{yz}{x}};\sqrt{\frac{zx}{y}};\sqrt{\frac{xy}{z}}\right)\)\(\Rightarrow\)\(a^2+b^2+c^2=1\)

\(A=\Sigma\frac{1}{1-ab}=\Sigma\frac{2ab}{2\left(a^2+b^2+c^2\right)-2ab}+3\le\frac{1}{2}\Sigma\frac{\left(a+b\right)^2}{b^2+c^2+c^2+a^2}\)

\(\le\frac{1}{2}\Sigma\left(\frac{a^2}{c^2+a^2}+\frac{b^2}{b^2+c^2}\right)=\frac{9}{2}\)

dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{3}\)