Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(S=x+y+\frac{1}{2x}+\frac{2}{y}\)
\(=\left(\frac{1}{2}x+\frac{1}{2x}\right)+\left(\frac{1}{2}y+\frac{2}{y}\right)+\left(\frac{1}{2}x+\frac{1}{2}y\right)\)
\(=\left(\frac{1}{2}x+\frac{1}{2x}\right)+\left(\frac{1}{2}y+\frac{2}{y}\right)+\frac{1}{2}\left(x+y\right)\)
\(\ge2\sqrt{\frac{1}{2}x\cdot\frac{1}{2x}}+2\sqrt{\frac{1}{2}y\cdot\frac{2}{y}}+\frac{1}{2}\cdot3\)( áp dụng bđt AM-GM và giả thiết x + y ≥ 3 )
\(=1+2+\frac{3}{2}=\frac{9}{2}\)
Đẳng thức xảy ra khi x = 1 , y = 2
Vậy MinS = 9/2, đạt được khi x = 1 , y = 2
\(T=21\left(x+\frac{1}{y}\right)+3\left(y+\frac{1}{x}\right)\)
\(=3\left(\frac{1}{x}+\frac{x}{9}\right)+21\left(\frac{1}{y}+\frac{y}{9}\right)+\frac{62x}{9}+\frac{2y}{3}\)
\(\ge6\sqrt{\frac{1}{x}\cdot\frac{x}{9}}+42\sqrt{\frac{1}{y}\cdot\frac{y}{9}}+\frac{62\cdot3}{9}+\frac{2\cdot3}{9}\)
\(=\frac{112}{3}\)
Đẳng thức xảy ra tại x=3;y=3
\(K=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}+24xy-20xy\)
\(\ge\frac{4}{\left(x+y\right)^2}+12-\frac{20\left(x+y\right)^2}{4}=11\)
Check xem có sai chỗ nào ko:v
Trời! Chứng minh vậy đọc ai hiểu được chời :)))
Vì \(\frac{1}{x^2+y^2}+\frac{1}{2xy}=\frac{1^2}{x^2+y^2}+\frac{1^2}{2xy}\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}=\frac{4}{\left(x+y\right)^2}\)
\(\frac{3}{2xy}+24xy\ge2\sqrt{\frac{3}{2xy}.24xy}=12\)
Lại quên dấu bằng xảy ra kìa em.
"=" xảy ra <=> x=y=1/2
vì x+y=1\(\Rightarrow\sqrt{1-x}=\sqrt{x+y-x}=\sqrt{y}\)
\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}=\frac{x+y+y}{\sqrt{y}}=\frac{y+1}{\sqrt{y}}=\frac{y+\frac{1}{2}}{\sqrt{y}}+\frac{1}{2\sqrt{y}}\)
ad cau-chy có \(y+\frac{1}{2}\ge2\sqrt{\frac{y}{2}}=\sqrt{2y}\)\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}\ge\sqrt{2}+\frac{1}{2\sqrt{y}}\)
Tương tự .....\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\)
cm \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{4}{\sqrt{x}+\sqrt{y}}\ge\frac{4}{\sqrt{2\left(x+y\right)}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)
\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}.2\sqrt{2}=3\sqrt{2}\)
Dấu = xra khi x=y=1/2
k cho mk nha mn ^.^
\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(1+y^2\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\)
TT...
\(\Rightarrow Q=x+y+z+3-\frac{y^2\left(x+1\right)}{1+y^2}-\frac{z^2\left(y+1\right)}{1+z^2}-\frac{x^2\left(1+z\right)}{1+x^2}\)
\(\ge6-\frac{y^2\left(x+1\right)}{2y}-\frac{z^2\left(y+1\right)}{2z}-\frac{x^2\left(z+1\right)}{2x}=6-\frac{xy+yz+xz+x+y+z}{2}\)
\(=6-\frac{3+xy+yz+xz}{2}\ge6-\frac{3+\frac{\left(x+y+z\right)^2}{3}}{2}=6-\frac{3+\frac{3^2}{3}}{2}=3\)
Vậy GTNN của Q là 3 khi x = y = z = 1
x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1
Suy ra : \(A=2x^2-\left(1-x\right)^2+x+\frac{1}{x}+1=2x^2-1+2x-x^2+x+\frac{1}{x}+1\)
\(=x^2+3x+\frac{1}{x}=x^2-x+\frac{1}{4}+4x+\frac{1}{x}+\frac{1}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+4x+\frac{1}{x}+\frac{1}{4}\)
Mà \(4x+\frac{1}{x}\ge2\sqrt{4x.\frac{1}{x}}=2.2=4\). Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2
Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2
Vậy min\(A=4+\frac{1}{4}=\frac{17}{4}\)<=> x = y = 1/2
Cách giải như sau
x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1
Suy ra : A=2x2−(1−x)2+x+1x +1=2x2−1+2x−x2+x+1x +1
=x2+3x+1x =x2−x+14 +4x+1x +14
=(x−12 )2+4x+1x +14
Mà 4x+1x ≥2√4x.1x =2.2=4. Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2
Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2
Vậy minA=4+14 =174 <=> x = y = 1/2
HOK TỐT
Từ điều kiện bài toán ta có
\(\hept{\begin{cases}\frac{x}{y}\ge1\\x-y\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{y}\ge1\\x^2-2xy+y^2\ge0\end{cases}}\)
Thế vào ta được
\(P=\frac{2x^2+y^2-2xy}{xy}\ge\frac{x^2}{xy}=\frac{x}{y}\ge1\)
Dấu = xảy ra khi x = y
\(S=\dfrac{x}{2}+\dfrac{1}{2x}+\dfrac{y}{2}+\dfrac{2}{y}+\dfrac{1}{2}\left(x+y\right)\)
\(S\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{2y}{2y}}+\dfrac{1}{2}.3=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)