\(A=\dfrac{1}{x}+\dfr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 1 2021

\(A\ge\dfrac{\left(1+2\right)^2}{x+y}=9\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{3};\dfrac{2}{3}\right)\)

12 tháng 1 2021

Tại sao  \(A\ge\dfrac{\left(1+2\right)^2}{x+y}=9\) vậy bạn?

29 tháng 8 2021

Giá trị nhỏ nhất là 2

29 tháng 8 2021

Giá trị nhỏ nhất là 3 căn 7 trên 2

29 tháng 8 2021

\(\dfrac{3\sqrt{17}}{2}\)

29 tháng 8 2021

Giá trị lớn nhất là 3

29 tháng 8 2021

Gia trị nhỏ nhất là 6

20 tháng 2 2019

                                    Lời giải

Dư đoán xảy ra cực trị tại \(x=y=\frac{1}{\sqrt{2}}\)

Ta biến đổi P như sau: \(P=\left(2x+\frac{1}{x}\right)+\left(2y+\frac{1}{y}\right)-\left(x+y\right)\)

\(\ge2\sqrt{2x.\frac{1}{x}}+2\sqrt{2y.\frac{1}{y}}-\left(x+y\right)\)\(=4\sqrt{2}-\left(x+y\right)\)

\(=4\sqrt{2}-\sqrt{2}\left(\sqrt{x^2.\frac{1}{2}}+\sqrt{y^2.\frac{1}{2}}\right)\)

\(\ge4\sqrt{2}-\sqrt{2}\left(\frac{x^2+y^2+1}{2}\right)=4\sqrt{2}-1\sqrt{2}=3\sqrt{2}\)

Vậy ...

29 tháng 8 2021

Giá trị lớn nhất là 2