K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2019

\(x=1-2y\)

=> \(P=\left(1-2y\right)y=-2y^2+y\) không có giá trị nhỏ nhất.

10 tháng 7 2021

Nguyễn Linh Chi chắc đề là tìm Max cô ạ=( cô off lâu quá=(

Từ x + 2y = 1 => x = 1 - 2y

Ta có : P = xy = ( 1 - 2y )y = -2y2 + y = -2( y2 - 1/2y + 1/16 ) +1/8

= -2( y - 1/4 )2 + 1/8 ≤ 1/8

hay P ≤ 1/8 . Dấu "=" xảy ra <=> x = 1/2 ; y = 1/4

Vậy ...

NV
8 tháng 10 2021

\(y\ge1+xy\Rightarrow1\ge\dfrac{1}{y}+x\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le4\Rightarrow\dfrac{y}{x}\ge4\)

\(G=\dfrac{x}{y}+\dfrac{y}{x}=\left(\dfrac{x}{y}+\dfrac{y}{16x}\right)+\dfrac{15}{16}.\dfrac{y}{x}\ge2\sqrt{\dfrac{xy}{16xy}}+\dfrac{15}{16}.4=\dfrac{17}{4}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)

NV
3 tháng 3 2021

\(P=\dfrac{x+2y}{2xy}+\dfrac{1}{x+2y}=\dfrac{x+2y}{4}+\dfrac{1}{x+2y}\)

\(P=\dfrac{x+2y}{16}+\dfrac{1}{x+2y}+\dfrac{3\left(x+2y\right)}{16}\)

\(P\ge2\sqrt{\dfrac{x+2y}{16\left(x+2y\right)}}+\dfrac{3}{16}.2\sqrt{2xy}=\dfrac{5}{4}\)

\(P_{min}=\dfrac{5}{4}\) khi \(\left(x;y\right)=\left(2;1\right)\)

\(B=\frac{x^3}{y+1}+\frac{y^3}{1+x}=\frac{\left(x^4+y^4\right)+\left(x^3+y^3\right)}{xy+x+y+1}\)

\(=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-xy\right)}{x+y+2}=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-1\right)}{x+y+2}\)

Áp dụng BĐT cô si với các số dương x; y2 ; x4 ; yta được :

\(B\ge\frac{2x^2y^2+\left(x+y\right)\left(2xy-1\right)}{x+y+2}=\frac{2+\left(x+y\right)}{x+y+2}=1\)

Dấu ''='' xảy ra khi \(\Leftrightarrow x=y=1\)

8 tháng 5 2018

Đặt \(a=\frac{9+3\sqrt{17}}{4}\) và  \(b=\frac{3+\sqrt{17}}{4}\)khi đó \(a=3b\)và  \(a+1=2b^2=c=\frac{13+3\sqrt{17}}{4}\)

Áp dụng BĐT AM-GM ta thu được các BĐT sau:  \(x^2+b^2y^2\ge2bxy\)

                                                                         \(by^2+z^2\ge2byz\)

                                                                         \(a\left(z^2+x^2\right)\ge2azx\)

Cộng các vế theo các vế các BĐT thu được để có: 

\(\left(a+1\right)\left(x^2+z^2\right)+2b^2y^2\ge2b\left(xy+yz\right)+2azx\)

Hay \(c\left(x^2+y^2+z^2\right)\ge2b\left(xy+yz+3zx\right)\). Từ đó ta thay các giá trị của \(xy+yz+3zx\); b và c để có được

\(P=x^2+y^2+z^2\ge\frac{\sqrt{17}-3}{2}\)

Cuối cùng, với \(x=z=\frac{1}{\sqrt[4]{17}}\)và \(y=\sqrt{\frac{13\sqrt{17}-51}{34}}\)( Thỏa mãn giả thiết )  thì \(P=\frac{\sqrt{17}-3}{2}\)

Nên ta kết luận \(\frac{\sqrt{17}-3}{2}\)là giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2\)

4 tháng 2 2021

Đặt A = x3 + y3 + xy 

= (x + y)(x2 - xy + y2) + xy

= x2 - xy + y2 + xy (Vì x + y = 1)

= x2 + y2 

Lại có x +y = 1

=> x = 1 - y

Khi đó A = x2 + y2

= (1 - y)2 + y2

= 1 - 2y + y2 + y2

= 2y2 - 2y  +1 = \(2\left(y^2-y+\frac{1}{2}\right)=2\left(y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{1}{4}\right)=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> \(y-\frac{1}{2}=0\Leftrightarrow y=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\)

Vậy Min A = \(\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
25 tháng 5 2021

Lời giải:

Áp dụng BĐT AM-GM:

\(\frac{x^2}{2}+8y^2\geq 4xy\)

\(\frac{x^2}{2}+8z^2\geq 4xz\)

\(2(y^2+z^2)\geq 4yz\)

\(4y^2+1\geq 4y\)

\(4y+2\geq 4\sqrt{2y}\)

Cộng theo vế các BĐT trên ta có:

\(P+3\geq 4(xy+yz+xz)=\frac{9}{4}.4=9\Rightarrow P\geq 6\)

Vậy $P_{\min}=6$. Giá trị này đạt tại $(x,y,z)=(2,\frac{1}{2}, \frac{1}{2})$

25 tháng 5 2021

Mấy bài như này có cách làm chung không ạ?Hay phải tự nháp...