K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
4 tháng 12 2017
Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)
4 tháng 12 2017
à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha
BT
1
8 tháng 3 2018
Hình như đề sai rùi bạn ơi !
Phải sửa xy/x^2+y^2 thành x^2+y^2/xy hoặc cái gì khác
Vì xy/x^2+y^2 chỉ có GTLN chứ ko có GTNN đâu
Mk nói có gì sai thì thông cảm nha !
V
0
NT
0
\(P=\frac{xy}{x+y+2}=\frac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2\left(x+y+2\right)}=\frac{\left(x+y\right)^2-4}{2\left(x+y+2\right)}\)
\(=\frac{\left(x+y+2\right)\left(x+y-2\right)}{2\left(x+y+2\right)}=\frac{x+y-2}{2}\)
mặt khác ta có :
\(x+y\le\sqrt{2\left(x^2+y^2\right)}=\sqrt{2\cdot4}=2\sqrt{2}\)
\(P\le\frac{2\sqrt{2}-2}{2}=\sqrt{2}-1\)
dấu băng xảy ra khi \(x=y=\sqrt{2}\)