\(x+2019x^2=2020y^2+y.\)Chứng minh rằng : x-y là số chí...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

Đẳng thức \(\left(x-y\right)\left[2019\left(x+y\right)+1\right]=y^2\)

d là ƯCLN (x-y);[(x+y)2019+1)

\(\Leftrightarrow\hept{\begin{cases}x-y⋮d\\\left(x+y\right)2019+1⋮d\end{cases}\Rightarrow y^2⋮d^2\Leftrightarrow y⋮d}\)

=> 2019(y+x) chia hết cho d => 2y.2019+1 chia hết cho d

=> d=1

=> (x-y);2019(x+y)+1 là 2 số nguyên tố cùng nhau mà tích là 2 số chính phương => x-y là số chính phương

Đặt x - y = t

\(x=y+t\)

\(x^2=\left(y+t\right)^2=\left(y+t\right)\left(y+t\right)=y^2+2yt+t^2\)

Thay vào ta có :

\(y+t+2019 \left(y^2+2yt+t^2\right)=2020y^2+y\)

\(t+4038yt+2019t^2=y^2\)

\(t+2019.2020t^2=\left(y-2019t\right)^2\)

\(t\left(1+2019.2020t\right)=\left(y-2019t\right)^2\)

\(\Rightarrow\)t là số chính phương do t và 1 + 2019.2020t là hai số nguyên tố cùng nhau.

11 tháng 8 2020

\(60=3.4.5\)

Ta cần chứng minh xyz chia hết cho 3 ; 4 và 5

\(∗\)Giả sử cả x ; y và z đều không chia hết cho 3

Khi đó x ; y và z chia cho 3 dư 1 hoặc dư 2 => x2 ; y2 và z2 chia cho 3 dư 1

\(\Rightarrow x^2+y^2\equiv1+1=2\) ( mod 3 )

Vô lí vì  \(z^2\equiv1\) ( mod 3 )

Vậy tồn tại ít nhất 1 số chia hết cho 3, do đó \(xyz⋮3\) ( 1 )

\(∗\)Giả sử cả x ; y và z không chia hết cho 4

Khi đó x ; y và z chia cho 4 dư 1 ; 2 hoặc 3

- TH1 : Cả x ; y và z lẻ => x2 ; y2 và z2 chia 4 dư 1

\(\Rightarrow x^2+y^2\equiv1+1=2\) ( mod 4 ) ( loại ) 

- TH2 : Có ít nhất 2 số chẵn => xyz chia hết cho 4

- TH3 : Có 1 số chẵn và 2 số lẻ

+) Với x ; y lẻ thì  \(z^2=x^2+y^2\equiv1+1=2\) ( mod 4 ) ( loại do z chẵn nên \(z^2\equiv0\) ( mod 4 ) )

+) Với x ; z lẻ thì \(y^2=z^2-x^2\equiv\left(z-x\right)\left(z+x\right)\) .Ta có bảng sau : 

 z x z-
 4m + 1 4n + 1 4( m - n )
 4m + 3 4n + 1 4 ( n - n ) + 2

Các trường hợp khác tương tự

Ta luôn có \(y^2=\left(z-x\right)\left(z+x\right)⋮8\)  . Trong khi đó ykhông chia hết cho 4 nhưng lại chia hết cho 8 => Mâu thuẫn 

Vậy tồn tại ít nhất 1 số chia hết cho 4 \(\Rightarrow xyz⋮4\) ( 2 )

\(∗\)Giả sử cả x ; y và z không chia hết cho 5

Khi đó x ; y và z chia cho 5 dư 1 ; 2 ; 3 hoặc 4 => x2 ; y2 và z2 chia cho 5 dư 1 hoặc -1

- TH1 : \(x^2\equiv1\) ( mod 5 ) ; \(y^2\equiv1\) ( mod 5 ) \(\Rightarrow z^2=x^2+y^2\equiv2\) ( mod 5 ) ( loại )

- TH2 : \(x^2\equiv-1\) ( mod 5 ) ; \(y^2\equiv-1\) ( mod 5 ) \(\Rightarrow z^2=x^2+y^2\equiv-1\) ( mod 5 ) ( loại )

- TH3 : \(x^2\equiv1\) ( mod 5 ) ; \(y^2\equiv-1\) ( mod 5 ) \(\Rightarrow z^2=x^2+y^2\equiv0\) ( mod 5 ) ( loại )

Vậy tồn tại ít nhất một số chia hết cho 5 \(\Rightarrow xyz⋮5\) ( 3 )

Từ ( 1 ) ; ( 2 ) và ( 3 ) \(\Rightarrow xyz⋮3.4.5=60\left(đpcm\right)\)

11 tháng 8 2020

cảm ơn bạn Death Note đã giúp mk nhé!

26 tháng 2 2018

+, Nếu cả 3 số x,y,z khi chia 3 đều khác dư thì :

x+y+z chia hết cho 3

(x-y).(y-z).(z-x) ko chia hết cho 3

=> ko t/m

+, Nếu trong 3 số x,y,z có 2 số chia cho 3 cùng dư , 1 số chia cho 3 khác dư 2 số còn lại thì :

x+y+z ko chia hết cho 3

(x-y).(y-z).(z-x) chia hết cho 3

=> ko t/m

=> cả 3 số x,y,z chia cho 3 đều có cùng dư

=> x-y;y-z;z-x đều chia hết cho 3

=> (x-y).(y-z).(z-x) chia hết cho 27

=> x+y+z chia hết cho 27

=> ĐPCM

Tk mk nha

4 tháng 4 2023

 

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:
$x+2019x^2=y+2019y^2$
$\Leftrightarrow (x-y)+2019(x^2-y^2)=0$

$\Leftrightarrow (x-y)[1+2019(x+y)]=0$

$\Rightarrow x-y=0$ hoặc $1+2019(x+y)]=0$

Với $x,y$ là số nguyên thì hiển nhiên $1+2019(x+y)\neq 0$ (do lẻ) 

$\Rightarrow x-y=0$

$\Rightarrow x-y=0^2$ là số chính phương.

29 tháng 5 2016

Ta thấy 11x⋮6 nên x⋮6.

Đặt x=6k (k nguyên).Thay vào (1) và rút gọn ta đượ c: 11k+3y=20

Biểu thị ẩn mà hệ số của nó có giá trị tuyệt đói nhỏ ( là y ) theo k ta được :

   y = 20 -11k3

Tách guyên giá trị nguyên của biểu thức này :

   y = 7 - 4k +k - 13

Lại đặt k - 13 = t với t nguyên => k = 3t + 1 . Do đó :

= 7 - 4 ( 3t + 1) +t = 3 - 11 = tx = 6k = 6 ( 3t+1) = 18t + 6

Thay các biểu thức của x và y vào (1), phương trình đượ c nghiệm đúng.

 Vậy các nghiệm nguyên của (1) đượ c biểu thị bở i công thức :

{=18t+6y=3−11t vớ i t là số nguyên tùy ý

 mk nha các bạn !!!

29 tháng 5 2016

Thành lập hội VICTOR_TÊN NHA

26 tháng 4 2018

a) (x+5)+(x+10)+.........+(x+60)=450 

   12x +(5+10+.........+60)=450

  12x+390=450

   12x=60

    x=5

26 tháng 4 2018

b) Gọi n là thương của phép chia a cho 54;              =>54n+38=252+r                  =>r-2 chia hết cho 54

r là dư của phép chia a cho 18 (n,r thuộc N;r<14)    =>54n =214+r                      =>r-2=0

=>a=54n + 38                                                       =>n=(214+r):54                     =>r =2

   a=18x14+r                                                          =>214+r chia hết cho 54       =>a=18x14+2=254                                    

=>54n+38=18x14+r                                               =>216+r-2 chia hết cho 54

9 tháng 11 2016

em học về các hằng đẳng thức chưa.

27 tháng 2 2019

\(x^2+45=y^2\)

\(y^2>45.\text{ Do đó y là số nguyên tố lẻ}\)

\(\Rightarrow x\text{ là số nguyên tố chẵn }.\text{Vậy x = 2}\)

\(\text{Ta có : }y^2=4+45\Leftrightarrow y^2=49\Leftrightarrow y=7\)

\(\Rightarrow x+y=2+7=9\)