K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

Ta có:

\(S=\dfrac{\left(x+y\right)^2}{x^2+y^2}+\dfrac{\left(x+y\right)^2}{xy}=1+\dfrac{2xy}{x^2+y^2}+2+\dfrac{x^2+y^2}{xy}\)

\(=3+\left(\dfrac{2xy}{x^2+y^2}+\dfrac{x^2+y^2}{2xy}\right)+\dfrac{x^2+y^2}{2xy}\)

\(\ge3+2+\dfrac{2xy}{2xy}=5+1=6\)

Vậy GTNN là S = 6 khi x = y

15 tháng 5 2017

ế, m làm giống cô giáo t đó,nhưng của m làm sơ sài lắm

:((

chỗ đằng trên tất nhiên là t hiểu,nhưng phần về = 3 + j j ý,m làm khác cô giáo t hướng dẫn.

Công thức tổng quát đây mà: a + b = 2căn(ab)

chiều nay t được giải đáp rồi,biết làm rồi,nhưng cách của m có vẻ khác khác đó:))

15 tháng 2 2020

Dễ thấy P>0. Ta có: \(P^2-\frac{8}{9}=\frac{\left(x-y\right)^2\left(x^2+4xy+y^2\right)}{9\left(xy+1\right)^2}\)

Suy ra \(P\ge\frac{2\sqrt{2}}{3}\). Đẳng thức xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)

P/s: Phân tích trên chỉ đúng khi \(x^2+y^2=1\) :))

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(F=\frac{x^4}{x^2\sqrt{y}}+\frac{y^4}{y^2\sqrt{x}}\geq \frac{(x^2+y^2)^2}{x^2\sqrt{y}+y^2\sqrt{x}}=\frac{4}{y^2\sqrt{x}+x^2\sqrt{y}}\)

Áp dụng BĐT Bunhiacopxky kết hợp AM-GM:

$(y^2\sqrt{x}+x^2\sqrt{y})^2\leq (y^2+x^2)(y^2x+x^2y)=2xy(x+y)$
$\leq (x^2+y^2)\sqrt{2(x^2+y^2)}=2\sqrt{2.2}=4$

$\Rightarrow y^2\sqrt{x}+x^2\sqrt{y}\leq 2$

$\Rightarrow F\geq \frac{4}{y^2\sqrt{x}+x^2\sqrt{x}}\geq \frac{4}{2}=2$
Vậy $F_{\min}=2$. Giá trị này đạt tại $x=y=1$

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(F=\frac{x^4}{x^2\sqrt{y}}+\frac{y^4}{y^2\sqrt{x}}\geq \frac{(x^2+y^2)^2}{x^2\sqrt{y}+y^2\sqrt{x}}=\frac{4}{y^2\sqrt{x}+x^2\sqrt{y}}\)

Áp dụng BĐT Bunhiacopxky kết hợp AM-GM:

$(y^2\sqrt{x}+x^2\sqrt{y})^2\leq (y^2+x^2)(y^2x+x^2y)=2xy(x+y)$
$\leq (x^2+y^2)\sqrt{2(x^2+y^2)}=2\sqrt{2.2}=4$

$\Rightarrow y^2\sqrt{x}+x^2\sqrt{y}\leq 2$

$\Rightarrow F\geq \frac{4}{y^2\sqrt{x}+x^2\sqrt{x}}\geq \frac{4}{2}=2$
Vậy $F_{\min}=2$. Giá trị này đạt tại $x=y=1$

AH
Akai Haruma
Giáo viên
29 tháng 12 2017

Lời giải:

\(M=x^2y^2(x^2+y^2)=xy.xy(x^2+y^2)\)

\(\Leftrightarrow M=\frac{xy}{2}.2xy(x^2+y^2)\)

Áp dụng BĐT Cô-si ngược dấu:

\(2xy(x^2+y^2)\leq \left(\frac{2xy+x^2+y^2}{2}\right)^2=\left(\frac{(x+y)^2}{2}\right)^2=\frac{(x+y)^4}{4}=\frac{2^4}{4}=4\)

\(xy\leq \left(\frac{x+y}{2}\right)^2=\left(\frac{2}{2}\right)^2=1\)

Do đó: \(M=\frac{xy}{2}.2xy(x^2+y^2)\leq \frac{1}{2}.4=2\)

Vậy \(M_{\max}=2\Leftrightarrow x=y=1\)

3 tháng 6 2016

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=1+2\left(ab+bc+ca\right).\)

\(\Rightarrow A=\left(ab+bc+ca\right)=\frac{1}{2}\left(a+b+c\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)với mọi a,b,c

Vậy A nhỏ nhất bằng -1/2 khi a+b+c =0

29 tháng 5 2022

Ta có : \((x-\dfrac{1}{3})^2+(y-\dfrac{1}{3})^2+(z-\dfrac{1}{3})^2>=0\)

\(=>x^2+y^2+z^2-\dfrac{2}{3}(x+y+z)+\dfrac{1}{3}\ge0\)

\(=>x^2+y^2+z^2+\dfrac{1}{3}\ge\dfrac{2}{3}(x+y+z)\)

\(=>1+\dfrac{1}{3}=\dfrac{4}{3}\ge\dfrac{2}{3}(x+y+z)\)

\(=>x+y+z\le2\)

Do đó : \((a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)=1+2(ab+bc+ca).\)

\(=>A=(ab+ac+bc)=\dfrac{1}{2}(a+b+c)^2-\dfrac{1}{2}\le\dfrac{1}{2}.2^2-\dfrac{1}{2}=\dfrac{3}{2}\)

13 tháng 8 2020

Ta dự đoán dấu = xảy ra khi x=y từ gt ta sẽ đoán ra \(2x^2=2x+x^2\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=y=2\end{matrix}\right.\) Từ đó ta sẽ cần cm Min=0, Max=4

Ta có: \(x+y=x^2+y^2-xy\ge x^2+y^2-\frac{x^2+y^2}{2}=\frac{x^2+y^2}{2}\ge\frac{\left(x+y\right)^2}{4}\Leftrightarrow4\ge x+y\)Vì x+y đạt max khi x,y đạt max hay x,y dương , ở trên ta áp dụng 2 bổ đề khá quen thuộc là \(a^2+b^2\ge2ab,a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

Không mất tỉnh tổng quát giả sử \(x\le y\) ta có:

\(x^2+y^2=x+y+xy\le x+y+y^2\)

\(\Leftrightarrow S\ge x^2\ge0\)

Câu 1: Cho x; y > 0 thỏa mãn x + y ≤ 1. Giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x^2+y^2}+\frac{5}{xy}\)  là: .......Câu 2: Số nghiệm của phương trình x4 + x3 = -x3 + x + 2 là: .......Câu 3: Cho biểu thức \(A=\frac{x+16}{\sqrt{x}+3}\)Giá trị nhỏ nhất của biểu thức A bằng  ........Câu 4: Cho 2 số dương x; y thỏa mãn x + y = 2.Giá trị lớn nhất của B = 2xy(x2 + y2) là: ...........Câu 5: Nghiệm của phương...
Đọc tiếp

Câu 1: Cho x; y > 0 thỏa mãn x + y ≤ 1. Giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x^2+y^2}+\frac{5}{xy}\)  là: .......

Câu 2: Số nghiệm của phương trình x4 + x3 = -x3 + x + 2 là: .......

Câu 3: Cho biểu thức \(A=\frac{x+16}{\sqrt{x}+3}\)
Giá trị nhỏ nhất của biểu thức A bằng  ........

Câu 4: Cho 2 số dương x; y thỏa mãn x + y = 2.
Giá trị lớn nhất của B = 2xy(x2 + y2) là: ...........

Câu 5: Nghiệm của phương trình\(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)là x = .............

Câu 6: Đa thức dư trong phép chia đa thức x + x3 + x9 + x27 + x81 + x243 cho đa thức (x2 - 1) là ax + b.
Khi đó a + b = .......

Câu 7: Cho x, y thuộc N* thỏa mãn x + y = 11.
Giá trị lớn nhất của biểu thức A = xy là:

Câu 8: Số giá trị của a để hệ xy+x+y=a+1 và x2y+ y2x có nghiệm duy nhất là:

Câu 9: Viết số 19951995 dưới dạng 19951995 = a+ a+ a+ ...... + an.
Khi đó a12 + a22 + a32 + ...... + anchia cho 6 thì có số dư là ............

0