\(\in R\)cho x+y, x2+y2,x4+y4 là nhữn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

Sai đề rồi nha bạn! Điều kiện:  \(x^2+y^3\ge x^3+y^4\)

Sử dụng bất đẳng thức  \(C-S,\)  ta có:

\(\left(x^3+y^3\right)^2=\left(x\sqrt{x}.x\sqrt{x}+y^2.y\right)^2\le\left(x^3+y^4\right)\left(x^3+y^2\right)\le\left(x^2+y^3\right)\left(x^3+y^2\right)\)

\(\le\left(\frac{x^2+y^3+x^3+y^2}{2}\right)^2\)

\(\Rightarrow\)  \(x^3+y^3\le\frac{x^2+y^3+x^3+y^2}{2}\)  \(\Leftrightarrow\)  \(x^3+y^3\le x^2+y^2\) \(\left(1\right)\)

Lại có:   \(\left(x^2+y^2\right)^2=\left(x\sqrt{x}.\sqrt{x}+y\sqrt{y}.\sqrt{y}\right)^2\le\left(x^3+y^3\right)\left(x+y\right)\le\left(x^2+y^2\right)\left(x+y\right)\)

\(\Rightarrow\)  \(x^2+y^2\le x+y\)  \(\left(2\right)\)

Mặt khác, từ  \(\left(2\right)\)  với lưu ý rằng  \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) \(\left(i\right)\)và  \(x,y\in R^+\) , ta thu được:

 \(x^2+y^2\le\sqrt{2\left(x^2+y^2\right)}\) \(\Leftrightarrow\)  \(x^2+y^2\le2\)   \(\left(3\right)\)

nên do đó,  \(\left(i\right)\)  suy ra \(x+y\le\sqrt{2.2}=2\)  \(\left(4\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\)  và  \(\left(4\right)\)  ta có đpcm

20 tháng 11 2018

bn ơi bn vào link này nhek bài thứ 2 từ cuối lên nhek https://diendantoanhoc.net/topic/151447-cho-x3-y3-3x2-y2-4xy-4-0-xy0-t%C3%ACm-max-frac1x-frac1y/

NV
27 tháng 8 2020

\(\left(x+y\right)^2\Rightarrow4xy\Rightarrow\left(x+y\right)^3+\left(x+y\right)^2\ge\left(x+y\right)^3+4xy\ge2\)

\(\Rightarrow\left(x+y\right)^3+\left(x+y\right)^2-2\ge0\)

\(\Rightarrow\left(x+y-2\right)\left[\left(x+y+1\right)^2+1\right]\ge0\)

\(\Rightarrow x+y\ge2\) \(\Rightarrow x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\ge2\)

Ta có: \(A=3\left(x^2+y\right)^2-3x^2y^2-2\left(x^2+y^2\right)+1\)

\(A\ge3\left(x^2+y^2\right)^2-\frac{3}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1=\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)

\(A\ge\frac{9}{4}\left(x^2+y^2-2\right)\left(x^2+y^2+\frac{10}{9}\right)+6\ge6\)

\(A_{min}=6\) khi \(x=y=1\)

4 tháng 8 2017

Dự đoán điểm rơi là x=y=1.đến đây AM-GM thôi :v 

ta có:\(y^4+y^4+y^4+1\ge4y^3\)

\(x^3+x^3+1\ge3x^2\)

\(\Rightarrow3y^4+2x^3+2\ge3\left(x^2+y^3\right)+y^3\ge3\left(x^3+y^4\right)+y^3\)

\(\Leftrightarrow2\ge x^3+y^3\)

....