Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(VT-VP=\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)(đúng với \(xy\ge1\))
Đẳng thức xảy ra khi a = b = 1
a/ \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\left(1+xy\right)\left(2+x^2+y^2\right)\ge2\left(1+x^2\right)\left(1+y^2\right)\)
\(\Leftrightarrow2+x^2+y^2+2xy+xy\left(x^2+y^2\right)\ge2+2x^2+2y^2+2x^2y^2\)
\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)-\left(x^2+y^2-2xy\right)\ge0\)
\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\) (luôn đúng)
b/ Để biểu thức xác định \(\Rightarrow x\ne0\Rightarrow x^2\ge1\)
\(4=\frac{y^2}{4}+x^2+\frac{1}{x^2}+x^2\ge\frac{y^2}{4}+2\sqrt{\frac{x^2}{x^2}}+1\ge\frac{y^2}{4}+3\)
\(\Rightarrow\frac{y^2}{4}\le1\Rightarrow y^2\le4\Rightarrow\left[{}\begin{matrix}y^2=0\\y^2=1\\y^2=4\end{matrix}\right.\)
\(y^2=0\Rightarrow2x^2+\frac{1}{x^2}=4\Rightarrow2x^4-4x^2+1=0\) (ko tồn tại x nguyên tm)
\(y^2=1\Rightarrow2x^2+\frac{1}{x^2}=3\Rightarrow2x^4-3x^2+1=0\Rightarrow x^2=1\)
\(\Rightarrow\left(x;y\right)=...\)
\(y^2=4\Rightarrow2x^2+\frac{1}{x^2}=0\Rightarrow\) ko tồn tại x thỏa mãn
1 ) Đề bài > not \(\ge\)
Giả sử đpcm là đúng , khi đó , ta có :
\(x^2+y^2+8>xy+2x+2y\)
\(\Leftrightarrow2x^2+2y^2+16>2xy+4x+4y\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8>0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8>0\left(1\right)\)
Do \(\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8\ge8>0\forall x;y\left(2\right)\)
Từ ( 1 ) ; ( 2 ) => Điều giả sử là đúng => đpcm
2 ) ĐK : a ; b ; c không âm
Áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ( cái này bạn áp dụng BĐT Cô - si để c/m ) , ta có :
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{a+b+b+c+c+a}=\frac{9}{6.2}=\frac{3}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=2\)
3 ) Áp dụng BĐT Cô - si cho các cặp số không âm , ta có :
\(x^2+y^2\ge2xy;y^2+z^2\ge2yz;x^2+z^2\ge2xz\)
\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\left(1\right)\)
\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)
\(\Rightarrow x^2+y^2+z^2+3\ge2x+2y+2z\left(2\right)\)
Từ ( 1 ) ; ( 2 ) , ta có : \(2x^2+2y^2+2z^2+x^2+y^2+z^2+3\ge2xy+2yz+2xz+2x+2y+2z\)
\(\Rightarrow3\left(x^2+y^2+z^2+1\right)\ge2\left(x+y+z+2xy+2xz+2yz\right)=2.6=12\)
\(\Rightarrow x^2+y^2+z^2+1\ge4\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)
Ta có: \(\left(x-y\right)^2\ge0\)
\(\Rightarrow x^2-2xy+y^2\ge0\)
\(\Rightarrow x^2+2xy+y^2\ge4xy\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)(đpcm)
Ta có vì : x,y > 0
và \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Từ đề bài ta có:
\(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\frac{x+y}{xy}.\left(x+y\right).xy\ge\frac{4}{x+y}.xy\left(x+y\right)\)
Áp dụng đẳng thức Cô-si:
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
Vậy....
đpcm.
Cái này biến đổi tương đương nhé, t có mỗi cách đó !
ta có BĐT cần chứng minh
\(\Leftrightarrow\left(1+xy\right)\left(1+x^2\right)+\left(1+xy\right)\left(1+y^2\right)\ge2\left(1+y^2\right)\left(1+x^2\right)\)
\(\Leftrightarrow1+x^2+xy+x^3y+1+y^2+xy+y^3\ge2\left(1+x^2+y^2+x^2y^2\right)\)
\(\Leftrightarrow2xy+x^3y+xy^3-x^2-y^2-2x^2y^2\ge0\)
\(\Leftrightarrow xy\left(x-y\right)^2-\left(x-y\right)^2\ge0\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\)
bđt này luôn đúng với \(x,y\ge1\)
dấu = xảy ra <=> x=y >=1
^_^
chọn của vũ tiền châu nhé
nhớ đêý
cảm ơn
t i c k nhé
kí tên hà ơi quá khắm :vvv
a)
Coi đây là pt bậc hai ẩn $y$. Để pt có nghiệm nguyên thì:
$\Delta'=x^2+3x+2=t^2$ với $t\in\mathbb{Z}$)
$\Rightarrow 4x^2+12x+8=4t^2$
$\Leftrightarrow (2x+3)^2-1=(2t)^2$
$\Leftrightarrow 1=(2x+3-2t)(2x+3+2t)$
Xét 2 TH sau:
TH1: $2x+3-2t=2x+3+2t=1$
$\Rightarrow x=-1; y=1$
TH2: $2x+3-2t=2x+3+2t=-1$
$\Rightarrow x=-2; y=2$
Vậy.......
b) Ta có:
\(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}\)
\(\Leftrightarrow \frac{x^2+y^2+2}{x^2+y^2+x^2y^2+1}\geq \frac{2}{xy+1}\)
\(\Leftrightarrow (x^2+y^2+2)(xy+1)\geq 2(x^2+y^2+x^2y^2+1)\)
\(\Leftrightarrow xy(x^2+y^2-2xy)-(x^2+y^2-2xy)\geq 0\)
$\Leftrightarrow (x-y)^2(xy-1)\geq 0$
Luôn đúng với mọi $xy\geq 1$
Ta có đpcm.
Dấu "=" xảy ra khi $x=y$ hoặc $xy=1$
*Áp dụng Cosi với x,y>0 ta có:
\(x+y\ge2\sqrt{xy}\left(1\right)\)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\left(2\right)\)
Nhân (1),(2) có: \(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\RightarrowĐPCM\)
**\(\frac{1}{xy}+\frac{1}{x\left(x+y\right)}+\frac{1}{y\left(x+y\right)}+\frac{1}{x^2+y^2}\)
Ta có: \(\frac{1}{x\left(x+y\right)}+\frac{1}{y\left(x+y\right)}\ge\frac{4}{x^2+2xy+y^2}=4\)
Có: \(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{\left(x+y\right)^2}\le4\)
Theo Cosi ta có: \(xy\le\left(\frac{x+y}{2}\right)^2\)
\(\Rightarrow\frac{1}{xy}\ge\left(\frac{2}{x+y}\right)^2\ge\left(\frac{2}{1}\right)^2=4\)
Áp dụng Cosi ta có: \(2xy\left(x^2+y^2\right)\le\left(\frac{x^2+2xy+y^2}{2}\right)^2=\frac{\left(x+y\right)^4}{4}\le\frac{1}{4}\)
\(\Rightarrow xy\left(x^2+y^2\right)\le\frac{1}{8}\)(1)
Mà ta có ở trên: \(xy\le\frac{\left(x+y\right)^2}{4}\le\frac{1}{4}\)(2)
Từ (1) và (2) ta có: \(x^2+y^2\le\frac{1}{2}\Rightarrow\frac{1}{x^2+y^2}\ge2\)
Vậy Ta có: \(\frac{1}{xy}+\frac{1}{x^2+xy}+\frac{1}{y^2+xy}+\frac{1}{x^2+y^2}\ge4+4+2=10\)
Với x=y=1/2
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\Leftrightarrow ab+bc+ca\ge\frac{3}{4}\)
áp dụng bđt holder ta có:
\(\left(a^3+b^3+c^3\right)\left(b^3+c^3+a^3\right)\left(1+1+1\right)\ge\left(ab+bc+ca\right)^3\)
\(\Leftrightarrow3\left(a^3+b^3+c^3\right)^2\ge\frac{27}{64}\)
\(\Leftrightarrow a^3+b^3+c^3\ge\frac{3}{8}\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\ge\frac{3}{8}\left(Q.E.D\right)\)
Biến đổi tương đương, do mọi hạng tử đều dương nên:
\(\frac{x^2+y^2+2}{\left(1+x^2\right)\left(1+y^2\right)}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\left(1+xy\right)\left(x^2+y^2+2\right)\ge2\left(x^2y^2+x^2+y^2+1\right)\)
\(\Leftrightarrow x^2+y^2+2+x^3y+xy^3+2xy=2x^2y^2+2x^2+2y^2+2\)
\(\Leftrightarrow x^3y+xy^3-2x^2y^2-\left(x^2-2xy+y^2\right)\ge0\)
\(\Leftrightarrow xy\left(x-y\right)^2-\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\) luôn đúng do \(xy\ge1\Rightarrow xy-1\ge0\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}xy=1\\x=y\end{matrix}\right.\)