Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}=1+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{xy}+2\)
\(\ge3+2\sqrt{\frac{2xy}{x^2+y^2}.\frac{x^2+y^2}{xy}}=3+2\sqrt{2}\)
Đẳng thức xảy ra <=> x = y
2, rút gọn B=x^2/(y-1)+y^2/(x-1)
AM-GM : x^2/(y-1)+4(y-1) >/ 4x ; y^2/(x-1)+4(x-1) >/ 4y
=> B >/ 4x-4(y-1)+4y-4(x-1)=4x-4y+4+4y-4x+4=8
minB=8
Câu 1:
Áp dụng BĐT AM-GM ta có: \(x+1\ge2\sqrt{x}\)
\(\Rightarrow x+1+x+1\ge x+2\sqrt{x}+1\)
\(\Rightarrow2x+2\ge\left(\sqrt{x}+1\right)^2\left(1\right)\)
Tương tự cũng có: \(2y+2\ge\left(\sqrt{y}+1\right)^2\left(2\right)\)
Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:
\(\left(2x+2\right)\left(2y+2\right)\ge\left(\sqrt{x}+1\right)^2\left(\sqrt{y}+1\right)^2\ge16\)
\(\Rightarrow4\left(x+1\right)\left(y+1\right)\ge16\Rightarrow\left(x+1\right)\left(y+1\right)\ge4\)
Lại áp dụng BĐT AM-GM ta có:
\(\left(x+1\right)+\left(y+1\right)\ge2\sqrt{\left(x+1\right)\left(y+1\right)}\ge4\)
\(\Rightarrow x+y\ge2\). Giờ thì áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(A=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)
Đẳng thức xảy ra khi \(x=y=1\)
Ta có: \(A=\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+y\right)\left(1+\frac{1}{x}\right)\)
\(=1+\frac{1}{y}+x+\frac{x}{y}+1+\frac{1}{x}+y+\frac{y}{x}\)
\(=\left(x+\frac{1}{2x}\right)+\left(y+\frac{1}{2y}\right)+\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)+2\)
Lại có: \(x,y\in Z^+\) nên ta có:
- \(x+\frac{1}{2x}\ge\sqrt{2}\)
Dấu " = " xảy ra \(\Leftrightarrow x=\frac{1}{\sqrt{2}}\)
- \(y+\frac{1}{2y}\ge\sqrt{2}\)
Dấu " = " xảy ra \(\Leftrightarrow y=\frac{1}{\sqrt{2}}\)
- \(\frac{x}{y}+\frac{y}{x}\ge2\)
Dấu " = " xảy ra \(\Leftrightarrow x=y\)
- \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{\sqrt{x^2+y^2}}{2}}=2\sqrt{2}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
Từ trên ta suy ra: \(A\ge3\sqrt{2}+4\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
Vậy \(A_{Min}=3\sqrt{2}+4\)
?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương
giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!
Tranh thủ làm 1, 2 bài rồi ăn cơm:
1/ Đặt \(m=n-2008>0\)
\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương
\(\Rightarrow369+2^m\) là số chính phương
m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương
\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)
b/
\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)
\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)
\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)
\(\Rightarrow x=y=4\)
\(S=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)
\(=1+\frac{2xy}{x^2+y^2}+2+\frac{x^2+y^2}{xy}\)
\(=3+\left(\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}\right)+\frac{x^2+y^2}{2xy}\)
\(\ge3+2+\frac{2xy}{2xy}=6\)
Dấu = xảy ra khi \(x=y\)
tks bạn