K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 9 2019

\(A=\left(y-2\right)^2+y^2=5y^2-4y+4\)

\(A=5\left(y^2-2.\frac{2}{5}y+\frac{4}{25}\right)+\frac{16}{5}=5\left(y-\frac{2}{5}\right)^2+\frac{16}{5}\ge\frac{16}{5}\)

\(\Rightarrow A_{min}=\frac{16}{5}\) ;

\(A_{max}\) không tồn tại

5 tháng 10 2021

\(A=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ A_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

4 tháng 4 2022

bn có giải đc ko?

4 tháng 4 2022

d. Áp dụng BĐT Caushy Schwartz ta có:

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

28 tháng 4 2016

a)25

b)2

26 tháng 12 2018

\(Taco:\)

\(|x^2-x+1|-|x^2-x-2|=|x^2-x+1|+\left(-|x^2-x-2|\right)\)

\(\ge|x^2-x+1-x^2+x+2|=3\)

Dấu "=" xảy ra khi: \(\left(x^2-x+1\right)\left(x^2-x-2\right)\ge0\Leftrightarrow........\)

23 tháng 3 2018

 Nước ta có nhiều tấm gương vượt lên số phận, học tập thành công (như anh Nguyễn ngọc kí, ...)Lấy nhan đề là ...

23 tháng 3 2018

Tả một người thân (ông, bà, cha, mẹ, anh, chị, em... của em) - Loigiaihay

25 tháng 2 2020

Chứng minh BĐT phụ :

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

Thật vậy : \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2-2xy\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) ( luôn đúng )

Áp dụng vào bài toán ta có : \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow2025\ge\left(x+y\right)^2\)

\(\Leftrightarrow-45\le x+y\le45\)

Vậy : \(min\left(x+y\right)=-45,max\left(x+y\right)=45\)