K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2019

Áp dụng bđt \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\) đc

\(S=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=2\)

Dấu "='' khi x = y = 1

24 tháng 2 2019

Cách 1 :

từ x + y = 2 ta có : y = 2 - x . Do đó : \(S=x^2+\left(2-x\right)^2=2\left(x-1\right)^2+2\ge2\)

Vậy min \(S=2\Leftrightarrow x=y=1\)

Cách 2 : áp dụng bất đẳng thức Bunhiacopxki với a = x , c = 1 ; b = y ; d = 1 , ta có :

\(\left(x+y\right)^2\le\left(x^2+y^2\right)\left(1+1\right)\Leftrightarrow4\le2\left(x^2+y^2\right)=2S\Leftrightarrow S\ge2\Rightarrow minS=2\Leftrightarrow x=y=1\)

27 tháng 11 2019

\(P=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)

\(\ge\frac{\left(x+y+x+y\right)^2}{x^2+y^2+2xy}+\frac{4xy}{2xy}=\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}+2=6\)

"=" xảy ra <=> x = y.

\(\)

29 tháng 6 2016

\(Q=\frac{x^2+1,2xy+y^2}{x-y}=\frac{x^2-2xy+y^2+3,2xy}{x-y}\)

\(=\frac{\left(x-y\right)^2+48}{x-y}=\frac{\left(x-y\right)^2}{x-y}+\frac{48}{x-y}\)

\(=x-y+\frac{48}{x-y}\ge2\sqrt{48}=8\sqrt{3}\)

17 tháng 4 2021

M=x+yxy.1z≥2√xyxy.1z=2z√xy≥2z(x+y2)=4z(x+y)M=x+yxy.1z≥2xyxy.1z=2zxy≥2z(x+y2)=4z(x+y)

=4z(1−z)=414−(z−12)2≥16=4z(1−z)=414−(z−12)2≥16

Min M= 16 khi  z=1/2 và  x=y =1/4

13 tháng 7 2018

\(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{y-1}\right)+\left(x\sqrt{x}-y\sqrt{y}\right)=0\)

\(\Leftrightarrow\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x-1}+\sqrt{y-1}}+x+\sqrt{xy}+y\right)=0\)

\(\Leftrightarrow x=y\)

\(\Rightarrow S=2x^2-8x+5=2\left(x-2\right)^2-3\ge-3\)

16 tháng 7 2018

Tại sao từ:\(\left(\sqrt{x-1}-\sqrt{y-1}\right)\)  lại => đc: \(\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}\)??????????

30 tháng 12 2019

Sửa đề : \(P=\frac{x^2+12}{x+y}+y\)

\(P=\frac{x^2}{x+y}+\frac{1}{4}\left(x+y\right)-\frac{1}{4}x+\frac{3}{4}y+\frac{12}{x+y}\)

\(\ge x-\frac{1}{4}x+\frac{3}{4}y+\frac{12}{x+y}\)( Áp dụng BĐT Cô - si )

\(=\frac{3}{4}\left(x+y\right)+\frac{12}{x+y}\)

\(\ge2\sqrt{\frac{3}{4}.12}=6\) ( Áp dụng BĐT Cô - si 1 lần nữa )
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{x+y}=\frac{1}{4}\left(x+y\right)\\\frac{3}{4}\left(x+y\right)=\frac{12}{\left(x+y\right)}\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\x+y=4\end{cases}}}\)

Vậy Min P = 6 khi x = y =2