Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(x^3+y^3+3xy=x^3+y^3+3xy\left(x+y\right)=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=1\)
b.\(x^3-y^3-3xy=x^3-y^3-3xy\left(x-y\right)=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=1\)
a) x3 + y3 + 3xy
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )
= ( x + y )3 - 3xy( x + y - 1 )
= 13 - 3xy( 1 - 1 )
= 1 - 3xy.0
= 1
b) x3 - y3 - 3xy
= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy
= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )
= ( x - y )3 + 3xy( x - y - 1 )
= 13 + 3xy( 1 - 1 )
= 1 + 3xy.0
= 1
a) Vì \(x-y=1\)
\(\Rightarrow\left(x-y\right)^3=1\)
\(\Leftrightarrow x^3-y^3-3xy\left(x-y\right)=1\)
\(\Leftrightarrow x^3-y^3-3xy=1\)
b) \(B=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)
\(=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(=4\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(=4x^2+4xy+4y^2-3x^2-6xy-3y^2\)
\(=x^2-2xy+y^2\)
\(=\left(x-y\right)^2\)
\(=4\)
a) Ta có: ab = 132 = 12.11 ( thỏa mãn điều kiện a+b = 23)
=> a2 + b2 = 122 + 112 = 144 + 121 = 265
a, Chứng minh \(x^3+y^3+z^3=\left(x+y\right)^3-3xy.\left(x+y\right)+z^3\)
Biến đổi vế phải thì ta phải suy ra điều phải chứng minh
b, Ta có: \(a+b+c=0\)thì
\(a^3+b^3+c^3==\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab\left(-c\right)+c^3=3abc\)
( Vì \(a+b+c=0\)nên \(a+b=-c\))
Theo giả thuyết \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
Khi đó \(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)
\(=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}\)
\(=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)
\(=xyz.\frac{3}{xyz}=3\)
1) \(A=x^3+y^3+3xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(A=x^2-xy+y^2+3xy\)
\(A=x^2+2xy+y^2=\left(x+y\right)^2=1\)
Vậy A = 1.
\(x^3+y^3=3xy-1\)
\(\Leftrightarrow x^3+y^3-3xy+1=0\)
\(\Leftrightarrow x^3+y^3+3x^2y+3xy^2-3xy-3x^2y-3xy^2+1=0\)
\(\Leftrightarrow\left(x+y\right)^3+1-3xy\left(x+y+1\right)=0\)
\(\Leftrightarrow\left(x+y+1\right)\left(x^2+2xy+y^2-x-y+1\right)-3xy\left(x+y+1\right)=0\)
\(\Leftrightarrow\left(x+y+1\right)\left(x^2+2xy+y^2-x-y+1-3xy\right)=0\)
\(\Leftrightarrow\left(x+y+1\right)\left(x^2+y^2-xy-x-y+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y+1=0\\x^2+y^2-xy-x-y+1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+y=-1\\x^2+y^2-xy-x-y+1=0\end{cases}}\)
Mà x, y dương nên \(x+y=-1\)là vô lí
Vậy \(x^2+y^2-xy-x-y+1=0\)
Đến đây đợi tớ nghĩ tiếp :v
X3 + Y3 =3XY - 1
=> X3 + Y3 + 3X2Y + 3XY2 - 3X2Y - 3XY2 - 3XY + 1 = 0
=> \(\subset X+Y\supset^3\)+ 1 - 3XY\(\subset X+Y+1\supset\)= 0
=> \(\subset X+Y+1\supset.\)\(\subset\subset X+Y\supset^2-X-Y+1\supset\)-3XY\(\subset X+Y+1\supset=0\)
=>\(\subset X+Y+1\supset.\)\(\subset X^2+Y^2+2XY-X-Y+1-3XY\supset\)=0
=> \(\subset X+Y+1\supset.\subset X^2+Y^2-XY-X-Y+1\)=0
Vì X,Y > 0 =>X+Y+1 > 0
\(\Rightarrow X^2+Y^2-XY-X-Y+1=0\)
\(\Rightarrow2X^2+2Y^2-2XY-2X-2Y+2=0\)
\(\Rightarrow X^2-2XY+Y^2+X^2-2X+1+Y^2-2Y+1=0\)
\(\Rightarrow\subset X-Y\supset^2+\subset X-1\supset^2+\subset Y-1\supset^2=0\)
Vì \(\subset X-Y\supset^2\ge;\subset X-1\supset^2\ge0;\subset Y-1\supset^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\subset X-Y\supset^2=0\\\subset X-1\supset^2=0\\\subset Y-1\supset^2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}X-Y=0\\X-1=0\\Y-1=0\end{cases}}\)\(\Rightarrow X=Y=1\) \(\Rightarrow A=1+1=2\)
Ta có:
\(x+y=1\)
\(\Rightarrow\left(x+y\right)^3=1^3\)
\(\Rightarrow\left(x+y\right)^3=1\)
\(\Rightarrow x^3+3x^2y+3xy^2+y^3=1\)
\(\Rightarrow x^3+3xy\left(x+y\right)+y^3=1\)
\(\Rightarrow x^3+3xy\cdot1+y^3=1\)
\(\Rightarrow x^3+3xy+y^3=1\)
Vậy: \(x^3+3xy+y^3=1\)