Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) cho x+y=1. Tính giá trị biểu thức x^3+ y^3+ 3xy
b) cho x-y=1. Tính giá trị biểu thức x^3- y^3- 3xy
x^3+ y^3+ 3xy
=(x+y)(x^2 -xy + y^2 ) + 3xy
=x^2 -xy + y^2 + 3xy
=x^2 + 2xy + y^2
=(x+y)^2 =1
=> x^3+ y^3+ 3xy=1
\(x^3-7x-6=0\)
\(x^3-3x^2+3x^2+2x-9x-6=0\)
\(x^2.\left(x-3\right)+3x.\left(x-3\right)+2.\left(x-3\right)=0\)
\(\left(x+3\right).\left(x^2+3x+2\right)=0\Rightarrow\left(x-3\right).\left(x^2+3x+x+2\right)=0\)
\(\Rightarrow\left(x-3\right).\left(x+1\right).\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\text{hoặc }x=-2\)
1) Ta có: A = 2(x3 - y3) - 3(x + y)2
A = 2(x - y)(x2 + xy + y2) - 3(x2 + 2xy + y2)
A = 2.2(x2 + xy + y2) - 3(x2 + 2xy + y2)
A = 4x2 + 4xy + 4y2 - 3x2 - 6xy - 3y2
A = x2 - 2xy + y2
A = (x - y)2
A = 22 = 4
2) xem lại đề
2) b)
Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)
\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)
\(ab+bc+ac=-60:2=-30\)
a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)
= (x+y)^3
= 1^3 =1
b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac
9^2 = 141 +2(ab+bc+ac)
-60 = 2(ab+bc+ac)
ab+ac+bc=-30
Vậy M=-30
c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)
= x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3
= x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3
= 0
Vậy N=0 .Chúc bạn học tốt.
Câu 1.
B = ( 3x + 5 )( 2x + 1 ) + ( 4x - 1 )( 3x + 2 )
= 6x2 + 3x + 10x + 5 + 12x2 + 8x - 3x - 2
= 18x2 + 18x + 3
| x | = 2 => x = ±2
Với x = 2 => B = 18.22 + 18.2 + 3 = 111
Với x = -2 => B = 18.(-2)2 + 18.(-2) + 3 = 39
C = ( 2x + y )( 2x + y ) + ( x - y )( y - z )
= 4x2 + 4xy + y2 + xy - xz - y2 + yz
= 4x2 + 5xy - xz + yz
Với x = 1 ; y = 1 ; z = 1 => C = 4.12 + 5.1.1 - 1.1 + 1.1 = 9
Câu 2.
Gọi ba số tự nhiên cần tìm là a ; a + 1 ; a + 2 ( a ∈ N )
Theo đề bài ta có :
( a + 1 )( a + 2 ) - a( a + 1 ) = 50
<=> a2 + 3a + 2 - a2 - a = 50
<=> 2a + 2 = 50
<=> 2a = 48
<=> a = 24 ( tmđk )
=> a + 1 = 25 ; a + 2 = 26
Vậy ba số cần tìm là 24 ; 25 ; 26
Câu 3.
Sửa đề một chút : ( x + y )( x3 - x2y + xy2 - y ) = x4 - y4
( x + y )( x3 - x2y + xy2 - y3 )
= x4 - x3y + x2y2 - xy3 + x3y - x2y2 + xy3 - y4
= x4 - y4 ( đpcm )
Câu 1 :
\(a,B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)
\(=6x^2-3x+10x-5+12x^2+8x-3x-2\)
\(=\left(6x^2+12x^2\right)+\left(-3x+10x+8x-3x\right)+\left(-5-2\right)\)
\(=18x^2-4x-7\)
Với \(|x|=2\Rightarrow x=\pm2\)
Với x = 2 => \(B=18.2^2-4.2-7=72-8-7=57\)
Với x = -2 => \(B=18.\left(-2\right)^2-4.\left(-2\right)-7=73\)
Câu b tương tự
Câu 2 :
Gọi 3 số tự nhiên cần tìm là a , a+1 , a+2 .
Vì tích của hai số đầu hỏ hơn tích của hai số sau là 50 nên ta có :
\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)
\(\Leftrightarrow a^2+2a+a+2-a^2-a=50\)
\(\Leftrightarrow\left(a^2-a^2\right)+\left(a-a\right)+2a=50-2\)
\(\Leftrightarrow2a=48\)
\(\Leftrightarrow a=24\)
Vậy ba số tự nhiên cần tìm lần lượt là 24,25,26 .
Câu 3 :
Ta có :
\(\left(x+y\right)\left(x^3-x^2y+xy^2-y^3\right)\)
\(=x^4-x^3y+x^2y^2-xy^3+yx^3-x^2y^2+xy^3-y^4\)
\(=x^4+\left(-x^3y+yx^3\right)+\left(x^2y^2-x^2y^2\right)+\left(-xy^3+xy^3\right)-y^4\)
\(=x^4-y^4\)
=> đpcm
a)a+b=1
A=(a+b)(a2-ab+b2)+3ab[(a+b)2-2ab]+6a2b2 = a2-ab+b2+3ab(1-2ab)+6a2b2=a2+2ab+b2=(a+b)2=1
b) làm như trên hoặc có cách để tính nhanh
x-y =1
chon x=1;y=0 thay vào ta được B=1
a, A= a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b) = a3 + b3 + 3ab(a2 + b2) + 6a2b2
= ( a + b)(a2 - ab + b2)+ 3ab(a2 +b2+ 2ab)
= a2 - ab + b2 + 3ab ( a+b)2
= a2 - ab + b2 + 3ab
= a2 +2ab + b2= (a+b)2 = 1
b, B = x3 - y3 - 3xy
= (x-y)(x2+xy+y2) -3xy
= x2+xy+y2 -3xy
= x2-2xy+y2
= (x-y)2 = 1
chúc bn hc tốt ^^
P = 3x2 - 2x + 3y2 - 2y + 6xy - 100
= 3( x2 + 2xy + y2 ) - 2( x + y ) - 100
= 3( x + y )2 - 2( x + y ) - 100
Với x + y = 5
=> P = 3.52 - 2.5 - 100 = 75 - 10 - 100 = -35
Q = x3 + y3 - 2x2 - 2y2 + 3xy( x + y ) - 4xy + 3( x + y ) + 10
= x3 + y3 - 2x2 - 2y2 + 3x2y + 3xy2 - 4xy + 3( x + y ) + 10
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 2x2 + 4xy + 2y2 ) + 3( x + y )
= ( x + y )3 - 2( x2 + 2xy + y2 ) + 3( x + y ) + 10
= ( x + y )3 - 2( x + y )2 + 3( x + y ) + 10
Với x + y = 5
=> Q = 53 - 2.52 + 3.5 + 10 = 100
a. \(P=3x^2-2x+3y^2-2y+6xy-100\)
\(\Leftrightarrow P=\left(3x^2+6xy+3y^2\right)-\left(2x+2y\right)-100\)
\(\Leftrightarrow P=3\left(x+y\right)^2-2\left(x+y\right)-100\)
\(\Leftrightarrow P=3.5^2-2.5-100\)
\(\Leftrightarrow P=-35\)
b. \(Q=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(\Leftrightarrow Q=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(2x^2+4xy+2y^2\right)+3\left(x+y\right)+10\)
\(\Leftrightarrow Q=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10\)
\(\Leftrightarrow Q=5^3-2.5^2+3.5+10\)
\(\Leftrightarrow Q=100\)
\(P=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)
\(=2\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)
\(=2\left(x^2+y^2\right)-3\left(x^2+y^2\right)-2xy\)
\(=-x^2-2xy-y^2\)
\(=-\left(x^2+2xy+y^2\right)\)
\(=-\left(x+y\right)^2\)
\(=-1\)