K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2020

Áp dụng bất đẳng thức cô si cho 3 sô dương ta có

\(1+x^3+y^3\ge3\sqrt[3]{1.x^3.y^3}=3xy\Leftrightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3}}{\sqrt{xy}}\left(1\right)\)

tương tự

\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}}\left(2\right);\frac{\sqrt{1+z^3+x^3}}{xz}\ge\frac{\sqrt{3}}{\sqrt{xz}}\left(3\right)\)

mặt khác \(\frac{\sqrt{3}}{\sqrt{xy}}+\frac{\sqrt{3}}{\sqrt{yz}}+\frac{\sqrt{3}}{\sqrt{zx}}\ge3\sqrt[3]{\frac{\sqrt{3}}{\sqrt{xy}}+\frac{\sqrt{3}}{\sqrt{yz}}+\frac{\sqrt{3}}{\sqrt{zx}}}\Rightarrow\frac{\sqrt{3}}{\sqrt{xy}}+\frac{\sqrt{3}}{\sqrt{yz}}+\frac{\sqrt{3}}{\sqrt{zx}}\ge3\sqrt{3}\left(4\right)\)

Cộng các BĐT 1,2,3,4 ta đc đpcm

Đẳng thức xảy ra khi (1) (2) (3) (4) là các đẳng thức <=> x=y=z=1

nguồn : ĐH 2005A-db1

13 tháng 4 2020

mình trả lời r mà sao chưa hiện ra thế nhỉ ??

18 tháng 9 2016

áp dụng tính chất của dãy tỉ số bằng nhau lf ra

9 tháng 9 2018

    \(\frac{x}{y^3-1}-\frac{y}{x^3-1}\)

\(=\frac{1-y}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}\)

\(=\frac{-x^2-x-1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\)

\(=\frac{\left(y^2-x^2\right)+y-x}{x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1}\)

\(=\frac{\left(y-x\right)\left(y+x\right)+y-x}{x^2y^2+x^2y+xy^2+x^2+xy+y^2+x+y+1}\)

\(=\frac{y-x+y-x}{x^2y^2+xy\left(x+y\right)+x\left(x+y\right)+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+xy+x+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+x\left(y+1\right)+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+\left(1-y\right)\left(y+1\right)+y^2+\left(x+y\right)+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+1-y^2+y^2+1+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+3}\)

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

30 tháng 7 2016

\(4x^8+1=\)\(4x^8-4x^4+4x^4+1\)\(=\left(4x^8+4x^4+1\right)-4x^4\)

                \(=\left(2x^4+1\right)^2-\left(2x^2\right)^2\)\(=\left(2x^4-2x^2+1\right)\left(2x^4-2x^2-1\right)\)

phần b em tự giải nhé

31 tháng 7 2016

giải câu b hộ tớ đk k ạ ??