K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

a) \(3xy^2-12x\)

\(=3x\left(y^2-4\right)\)

 

Bài 1:

b: \(=\left(x-2y\right)\left(x+2y\right)+4\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y+4\right)\)

c: \(=\left(x+y-3\right)\left(x+y+3\right)\)

Bài 1: 

a: \(3xy^2-12x=3x\left(y^2-4\right)=3x\left(y-2\right)\left(y+2\right)\)

b: \(x^2-4y^2+4x+8y\)

\(=\left(x-2y\right)\left(x+2y\right)+4\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y+4\right)\)

a: Ta có: \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)

\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)

\(=\left(x^2+9x\right)^2+38\left(x^2+9x\right)+360+1\)

\(=\left(x^2+9x\right)^2+2\cdot\left(x^2+9x\right)\cdot19+19^2\)

\(=\left(x^2+9x+19\right)^2\)

24 tháng 8 2021

b. \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)

\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)

\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)

\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)

c. \(x^2-2x\left(y+2\right)+y^2+4y+4\)

\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)

\(=\left(x-y-2\right)^2\)

d. \(x^2+2x\left(y+1\right)+y^2+2y+1\)

\(=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)

\(=\left(x+y+1\right)^2\)

3 tháng 11 2016

Câu 1:

(2x - 3)2 - 4 (x - 3) (x + 3) = (-11)

<=> (4x- 12x +9) - 4 . (X2 - 9) + 11 =0

<=> 4x2 - 12x + 9 - 4x2 + 36 + 11 = 0

<=> -12x + 46 = 0

<=> X = 23/6

3 tháng 11 2016

Câu 2: 

x2 + 4x - y2 + 4y = 0

<=> (x2 - y2) + (4x + 4y) = 0

<=> (x + y) (x - y) + 4 (x + y) = 0

<=> (x+y) (x - y + 4) = 0

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

17 tháng 7 2017

Ta có : 3(2x - 1)2 \(\ge0\forall x\)

           7(3y + 5)2 \(\ge0\forall x\)

Mà : 3(2x - 1)2 + 7(3y + 5)2 = 0 

Nên : 3(2x - 1)2 = 7(3y + 5)2 = 0 

\(\Leftrightarrow\hept{\begin{cases}3\left(2x-1\right)^2=0\\7\left(3y+1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(3y+1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)=0\\\left(3y+1\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x=1\\3y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)