Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VẬy bạn giải ra cho mọi người xem được ko?
Lớn hơn hoặc bằng kí hiệu trong Latex là \geq nha!
\(\left(x+1\right)\left(y+1\right)=2\)
\(\Leftrightarrow x=\frac{1-y}{1+y}\)
\(P=\sqrt{x^2+y^2-\sqrt{2\left(x^2+1\right)\left(y^2+1\right)}+2}+xy\)
\(=\sqrt{\left(\frac{1-y}{1+y}\right)^2+y^2-\sqrt{2\left(\left(\frac{1-y}{1+y}\right)^2+1\right)\left(y^2+1\right)}+2}+\left(\frac{1-y}{1+y}\right)y\)
\(=\sqrt{\left(\frac{1-y}{1+y}\right)^2+y^2-2.\frac{y^2+1}{y+1}+2}+\left(\frac{1-y}{1+y}\right)y\)
\(=\sqrt{\left(\frac{y^2+1}{y+1}\right)^2}+\left(\frac{1-y}{1+y}\right)y\)
\(=\frac{y^2+1}{y+1}+\left(\frac{1-y}{1+y}\right)y=1\)
Khai triển nó ra,ta có:
\(1+y^2=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)
\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)
\(1+z^2=xy+yz+zx+z^2=\left(z+x\right)\left(z+y\right)\)
Ta có:\(P=\Sigma x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(\Sigma x\cdot\left(y+z\right)\)
Rút gọn dc như vậy rồi chị làm nốt ạ
\(\sqrt{2000}\)=\(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(\Rightarrow2000=x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\)
=\(x^2y^2+1+x^2+y^2+x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(\Rightarrow x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2000-1=1999\)
ma \(S^2=x^2\left(1+y^2\right)+y^2\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
=\(x^2+x^2y^2+y^2+x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
=\(x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\) =\(1999\Rightarrow S=\sqrt{1999}\)
\(xy+\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=\sqrt{2018}\)
\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=2018\)
\(x^2y^2+x^2y^2+x^2+y^2+1+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=2018\)
\(x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=2017\)
\(\left(x\sqrt{y^2+1}+y\sqrt{x^2+1}\right)^2=2017\)
\(\Rightarrow A=\left(x\sqrt{y^2+1}+y\sqrt{x^2+1}\right)^2=2017\)
\(\Rightarrow A=\sqrt{2017}\) khi x, y > 0 hoặc \(A=-\sqrt{2017}\) khi x, y < 0