Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2=\frac{4}{\left(x+y\right)^2}+2=6\)
Dấu "=" xảy ra khio x=y=1/2
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
Bổ đề: \(2xy\le x^2+y^2\)
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}=\frac{1}{x^2+y^2}+\frac{4}{2xy}\ge\frac{1}{x^2+y^2}+\frac{4}{x^2+y^2}=\frac{5}{x^2+y^2}\ge5\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)
Ta có : \(A=xy+\frac{1}{xy}=\left(16xy+\frac{1}{xy}\right)-15xy\)
Áp dụng bất đẳng thức Cauchy , ta có :
\(16xy+\frac{1}{xy}\ge2.\sqrt{16xy.\frac{1}{xy}}=8\)
Suy ra \(A\ge8-15xy\)
Ta lại có \(xy\le\frac{\left(x+y\right)^2}{4}\)
<=> \(15xy\le\frac{15.1}{4}=\frac{15}{4}\)
<=> \(-15xy\ge\frac{15}{4}\)
Suy ra \(A\ge8-\frac{15}{4}=\frac{17}{4}\)
Đẳng thức xảy ra <=> x = y = \(\frac{1}{2}\)
\(yz\le\frac{\left(y+z\right)^2}{4}\Rightarrow\frac{x^2\left(y+z\right)}{yz}\ge\frac{4x^2}{y+z}\)
Do đó \(P\ge\frac{4x^2}{y+z}+\frac{4y^2}{z+x}+\frac{4z^2}{x+y}\ge\frac{4\left(x+y+z\right)^2}{2\left(x+y+z\right)}=2\)(Vì x+y+z = 1)
Vậy Min P= 2. Dấu "=" có <=> x = y = z = 1/3.
b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz)
\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)
a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky)
\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)
\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)
Dấu "=" xảy ra <=> x = y = z = 2/3
Ta có \(x^2+y^2\ge2xy\)=>\(xy\le\frac{1}{2}\)
\(\frac{1}{A}=\frac{1}{-2xy}-\frac{1}{2}\le-1-\frac{1}{2}=-\frac{3}{2}\)
=> \(A\ge-\frac{2}{3}\)
\(MinA=-\frac{2}{3}\)khi \(x=y=\frac{\sqrt{2}}{2}\)
Trần Phúc Khang: bài này cần gì phải làm phức tạp vậy a
c/m: \(xy\le\frac{1}{2}\)( như bài Trần Phúc Khang)
Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)
\(A=\frac{-2xy}{1+xy}\ge\frac{-2.\frac{1}{2}}{1+\frac{1}{2}}=-\frac{1}{\frac{3}{2}}=-\frac{2}{3}\)
Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)
KL:.............................
???????
\(A=\frac{1}{x^2+y^2}+\frac{5}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{9}{2xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{9}{2\left(\frac{x+y}{2}\right)^2}\)
nên \(A\ge4+9.2=22\)
Dấu bằng xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)