\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2016

\(x+\sqrt{xy}=3\sqrt{xy}+15y\Leftrightarrow x-2\sqrt{xy}+y=16y\Leftrightarrow\sqrt{x}=\sqrt{y}+4\sqrt{y}=5\sqrt{y}\Leftrightarrow x=25y\)

\(E=\frac{50y+5y+3y}{25y+5y-y}=\frac{58}{29}=2\)

 

31 tháng 1 2016

Bài toán hay đấy

28 tháng 10 2014

xin lỗi em mới lớp 8 ko trả lời dc

2 tháng 8 2015

DÀi lắm 

Áp dụng bđt AM-GM ta có

\(\sqrt{3x\left(2x+y\right)}+\sqrt{3y\left(2y+x\right)}\le\frac{3x+2x+y}{2}+\frac{3y+2y+x}{2}=\frac{6\left(x+y\right)}{2}=3\left(x+y\right)\)

\(\Rightarrow P\ge\frac{x+y}{3\left(x+y\right)}=\frac{1}{3}\)

Dấu "=" xảy ra khi x=y

AH
Akai Haruma
Giáo viên
1 tháng 6 2019

Lời giải:
\(P=(\sqrt{x}+1)-\frac{y(\sqrt{x}+1)}{y+1}+(\sqrt{y}+1)-\frac{z(\sqrt{y}+1)}{z+1}+(\sqrt{z}+1)-\frac{x(\sqrt{z}+1)}{x+1}\)

\(=(\sqrt{x}+\sqrt{y}+\sqrt{z}+3)-\left[\frac{y(\sqrt{x}+1)}{y+1}+\frac{z(\sqrt{y}+1)}{z+1}+\frac{x(\sqrt{z}+1)}{x+1}\right]\)

\(=6-\left[\frac{y(\sqrt{x}+1)}{y+1}+\frac{z(\sqrt{y}+1)}{z+1}+\frac{x(\sqrt{z}+1)}{x+1}\right](1)\)

Áp dụng BĐT Cauchy:

\(\frac{y(\sqrt{x}+1)}{y+1}+\frac{z(\sqrt{y}+1)}{z+1}+\frac{x(\sqrt{z}+1)}{x+1}\leq \frac{y(\sqrt{x}+1)}{2\sqrt{y}}+\frac{z(\sqrt{y}+1)}{2\sqrt{z}}+\frac{x(\sqrt{z}+1)}{2\sqrt{x}}=\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}+(\sqrt{xy}+\sqrt{yz}+\sqrt{xz})}{2}\)

Theo hệ quả quen thuộc của BĐT Cauchy: \((\sqrt{xy}+\sqrt{yz}+\sqrt{xz})\leq \frac{1}{3}(\sqrt{x}+\sqrt{y}+\sqrt{z})^2\)

\(\Rightarrow \frac{y(\sqrt{x}+1)}{y+1}+\frac{z(\sqrt{y}+1)}{z+1}+\frac{x(\sqrt{z}+1)}{x+1}\leq \frac{(\sqrt{x}+\sqrt{y}+\sqrt{z})+\frac{1}{3}(\sqrt{x}+\sqrt{y}+\sqrt{z})^2}{2}=3(2)\)

Từ \((1);(2)\Rightarrow P\geq 6-3=3\)

Vậy \(P_{\min}=3\Leftrightarrow x=y=z=1\)

5 tháng 5 2018

Áp dụng bất đẳng thức Bunyakovsky:

\(P^2=\left(\sqrt{2x+yz}+\sqrt{2y+xz}+\sqrt{2z+xy}\right)^2\)

\(\le\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)\)

\(=3\left(4+xy+yz+xz\right)=12+3\left(xy+yz+xz\right)\)

Mặt khác,theo AM-GM:

\(3\left(xy+yz+xz\right)\le\left(x+y+z\right)^2=4\)

\(\Rightarrow12+3\left(xy+yz+xz\right)\le12+4=16\)

\(\Rightarrow P^2\le16\Leftrightarrow P\le4\)

Dấu "=" xảy ra khi: \(x=y=z=\dfrac{2}{3}\)