![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 1:
a,\(\left(x+1\right)^3-\left(x+3\right)^2\cdot\left(x+1\right)+4x^2=\)-12
\(\Rightarrow\left(x+1\right)\cdot[\left(x+1\right)^2-\left(x+3\right)^2]+4x^2=-12\)
\(\Rightarrow\left(x+1\right)\cdot[\left(x+1+x+3\right)\cdot\left(x+1-x-3\right)]+4x^2=-12\)
\(\Rightarrow\left(x+1\right)\cdot\left(2x+4\right)\cdot\left(-2\right)+4x^2=-4\cdot3\)
\(\Rightarrow\left(x+1\right)\cdot2\cdot\left(x+2\right)\cdot\left(-2\right)+4x^2=-4\cdot3\)
\(\Rightarrow\left(x+1\right)\cdot\left(x+2\right)\cdot\left(-4\right)+4x^2=-4\cdot3\)
\(\Rightarrow\left(x+1\right)\cdot\left(x+2\right)-x^2=3\)
\(\Rightarrow x^2+2x+x+2-x^2=3\)
\(\Rightarrow3x=1\Rightarrow x=\frac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trước hết, tính \(x^4\) theo \(a\) . Ta có:
\(\left(x^2-\frac{1}{x^2}\right):\left(x^2+\frac{1}{x^2}\right)=a\)
\(\Leftrightarrow\) \(\left(\frac{x^4-1}{x^2}\right):\left(\frac{x^4+1}{x^2}\right)=a\)
\(\Leftrightarrow\) \(\frac{x^4-1}{x^4+1}=a\) \(\Rightarrow\) \(x^4-1=ax^4+a\) \(\Rightarrow\) \(x^4-ax^4=a+1\) \(\Rightarrow\) \(x^4=\frac{a+1}{1-a}\) (do \(a\ne0\) )
Thay vào \(M\) và rút gọn được \(M=\frac{2a}{a^2+1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 2
Giải:x6+y6)-3(x4+y4)
2(x6+y6)−3(x4+y4)2(x6+y6)−3(x4+y4)
⇔2(x2+y2)(x4−x2y2+y4)−3x4−3y4⇔2(x2+y2)(x4−x2y2+y4)−3x4−3y4
⇔2(x4−x2y2+y4)−3x4−3y4⇔2(x4−x2y2+y4)−3x4−3y4
⇔2x4−2x2y2+2y4−3x4−3y4⇔2x4−2x2y2+2y4−3x4−3y4
⇔−2x2y2−x4−y4⇔−2x2y2−x4−y4
⇔−(x4+2x2y2+y4)⇔−(x4+2x2y2+y4)
⇔−(x2+y2)2⇔−(x2+y2)2
⇔−1
bài 1
bạn thay vào hết và tính ra là được
\(\Leftrightarrow\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)
\(\Leftrightarrow3x^3+3y^3+3xy\left(x+y\right)-3x^3-3y^3-3xy\left(x+y\right)=0\)(điều phải c/m)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = (x4 + 2x3 + x2) + 4. ( x2 + x + 1) = (x2 + x)2 + 4. a = (a - 1)2 + 4a = a2 + 2a + 1 = (a + 1)2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(x^4+2x^3+x^2\right)+4.\left(x^2+x+1\right)\)
\(A=\left(x^2+x\right)^2+4.a\)
\(A=\left(a-1\right)^2+4a\)
\(A=a^2+2a+1\)
\(A=\left(a+1\right)^2\)
Ta có : \(A=x^4+2x^3+5x^2+4x+4\)
\(=\left(x^4+x^3+x^2\right)+\left(x^3+x^2+x\right)+\left(3x^2+3x+3\right)+1\)
\(=x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+3\left(x^2+x+1\right)+1\)
\(=\left(x^2+x+1\right)\left(x^2+x+3\right)+1\)\(=a\left(a+2\right)+1=a^2+2a+1=\left(a+1\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)
\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)