Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABC và tam giác OMN có
^BAC = ^MON = 900
ACON=BCMN=84=105=2ACON=BCMN=84=105=2
Vậy tam giác ABC ~ tam giác OMN
b, ABOM=BCMN=ACONABOM=BCMN=ACON( tỉ số đồng dạng )
a)
Tính AB:
AB2 = BC2 + AC2
AB2 = 164
AB = \(\sqrt{164}\)= 12,8
Tính OM
OM2 = MN2 + ON2
OM2 = 41
OM = \(\sqrt{41}\)= 6,4
b)
Xét \(\Delta ABC\)và \(\Delta OMN\):
\(\widehat{A}\)= \(\widehat{O}\)= 90o
\(\frac{BC}{MN}\)= \(\frac{AC}{ON}\)= 2
\(\Rightarrow\) \(\Delta ABC\)~ \(\Delta OMN\) \(\Leftrightarrow\) \(\frac{AB}{OM}\)= \(\frac{BC}{MN}\)= \(\frac{AC}{ON}\)= 2
A B C H K I F E
a) Tứ giác AHKI là hình vuông \(\Rightarrow S_{AHKI}=AH^2=2^2=4\left(cm^2\right)\)
b) Xét \(\Delta ABH\)và \(\Delta AFI\)có:
+) \(\widehat{AIF}=\widehat{AHB}=90^o\)
+) \(AH=AI\)( vì \(AHKI\)là hình vuông )
+) \(\widehat{BAH}=\widehat{IAF}\)( cùng phụ với \(\widehat{HAC}\))
\(\Rightarrow\Delta ABH=\Delta AFI\left(g.c.g\right)\)\(\Rightarrow AB=AF\)
Xét tứ giác \(ABEF\)có: \(BE//AF\), \(AB//EF\), \(\widehat{BAC}=90^o\), \(AB=AF\)
\(\Rightarrow ABEF\)là hình vuông ( đpcm )
Ta có :
Tam giác ABC cân tại A
=> BAH=CAH
Ta lại có:
AI=AK
Gọi giao điểm của AH và IK là M
Xét ΔAIMΔAIM và ΔAKMΔAKM có:
AT=AK ( gt )
BAH=CAH(cmt)
AM chung
=> ΔAIMΔAIM= ΔAKMΔAKM (c.g.c)
=> IM=KM
=> I là đối xứng của K qua AH
(đ.p.c.m)
:))
Ta có :
Tam giác ABC cân tại A
=> BAH=CAH
Ta lại có:
AI=AK
Gọi giao điểm của AH và IK là M
Xét ΔAIMΔAIM và ΔAKMΔAKM có:
AT=AK ( gt )
BAH=CAH(cmt)
AM chung
=> ΔAIMΔAIM= ΔAKMΔAKM (c.g.c)
=> IM=KM
=> I là đối xứng của K qua AH
(đ.p.c.m)
a) Xét \(\Delta ABH\)có BI là phân giác của \(\widehat{ABH}\)(vì BD là phân giác của \(\widehat{ABC}\))
\(\Rightarrow\frac{IA}{IH}=\frac{BA}{BH}\)(tính chất)
\(\Rightarrow IA.BH=IH.AB\)(diều phải chứng minh)
Xét \(\Delta ABC\)và \(\Delta HBA\)có:
\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)
\(\widehat{CBA}\)chung.
\(\Rightarrow\Delta ABC\approx\Delta HBA\left(g.g\right)\)(điều phải chứng minh)
A B C H I D O
a, H là trực tâm của tg ABC => BH _|_ AC mà CD _|_ AC => BH // DC
CH _|_ AB mà BD _|_ AB => CH // BD
=> BHCD là hình bình hành
b, BHCD là hbh (Câu a) => BC cắt HD tại trung điểm của mỗi đường
mà có I là trung điểm của BC )gt-
=> I là trung điểm của HD
=> H;I;D thẳng hàng
c, xét tam giác AHD có : H là trung điểm của HD và o là trung điểm của AD
=> OI là đường trung bình của tam giác AHD
=> OI = AH/2
=> 2OI = AH
d, đang nghĩ
a) Tứ giác BHCDBHCD có:
BH//DC (do cùng ⊥AC
CH//BD (do cùng ⊥AB
⇒BHCD là hình bình hành (