\(\ne -2004\) CMR \(\frac{x}{(x+2004)^2}\le\frac{1}{8016}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 10 2017

Lời giải:

Xét \(x< 0\Rightarrow \frac{x}{(x+2004)^2}< 0< \frac{1}{8016}\)

Xét \(x\geq 0\)

Ta có \((x+2004)^2-8016x=x^2+2004^2+4008x-8016x\)

\(=(x-2004)^2\geq 0\)

Suy ra \((x+2004)^2\geq 8016x\)

\(\Rightarrow \frac{x}{(x+2004)^2}\leq \frac{x}{8016x}=\frac{1}{8016}\)

Ta có đpcm

16 tháng 10 2017

@Akai Harumahelp me

12 tháng 3 2019

Help me!!!

20 tháng 2 2020

Bạn rút gọn sai rồi, mình nhìn đề bài b) cho x>2 thì là biết chắc bạn sai , mình làm lại nhé : ( ĐKXĐ : tự làm )

a) \(Q=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\left(\frac{\left(x+2\right)\left(x-2\right)+x+6-x^2}{x\left(x-2\right)}\right)\)

\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\frac{x+2}{x\left(x-2\right)}\)

\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}\cdot\frac{x\left(x-2\right)}{x+2}=\frac{x^2}{x-2}\)

Vậy \(Q=\frac{x^2}{x-2}\)

b) Ta có : \(Q=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)

Do \(x>2\Rightarrow x-2>0\) và \(\frac{4}{x-2}>0\)do đó áp dụng BĐT Cô si cho 2 số dương ta được :

\(x-2+\frac{4}{x-2}\ge2\sqrt{\left(x-2\right).\left(\frac{4}{x-2}\right)}=2\cdot\frac{1}{2}=1\)

\(\Rightarrow Q\ge1+4=5\)

Vậy : GTNN của \(Q=5\)

P/s : Ai vào kiểm tra hộ cái :)) Sợ sai lắm nhé, cảm ơn nha 33

20 tháng 2 2020

Nếu chưa học Cô si thì chứng minh rồi dùng thôi :

Bài này sử dụng Cô - si hai số nên cần chứng minh BĐT :

\(a+b\ge2\sqrt{ab}\left(a,b>0\right)\)

Thật vậy : \(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )

Do đó \(a+b\ge2\sqrt{ab}\) với a,b >0

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

27 tháng 1 2018

\(A=\left(\frac{x+2}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{x+2}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)

\(A=\left[\frac{\left(x+2\right)^2}{4-x^2}+\frac{4x^2}{4-x^2}-\frac{\left(2-x\right)^2}{4-x^2}\right]:\left[\frac{x\left(x-3\right)}{x^2.\left(2-x\right)}\right]\)

\(A=\left[\frac{x^2+4x+4+4x^2-4+4x-x^2}{4-x^2}\right]:\left[\frac{x-3}{x\left(2-x\right)}\right]\)

\(A=\frac{4x^2+8x}{4-x^2}:\frac{x-3}{x\left(2-x\right)}\)

\(A=\frac{4x\left(x+2\right)}{\left(2-x\right)\left(x+2\right)}.\frac{x\left(2-x\right)}{x-3}\)

\(A=\frac{4x^2}{x-3}\)

27 tháng 1 2018

giúp mình với !!!

AH
Akai Haruma
Giáo viên
12 tháng 5 2018

Lời giải:

Ta cần chứng minh \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\geq x^2+y^2+z^2\)

\(\Leftrightarrow \frac{x^2y^2+y^2z^2+z^2x^2}{xyz}\geq \sqrt{3(x^2+y^2+z^2)}\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\geq xyz\sqrt{3(x^2+y^2+z^2)}\)

\(\Leftrightarrow (x^2y^2+y^2z^2+z^2x^2)^2\geq 3x^2y^2z^2(x^2+y^2+z^2)\)

\(\Leftrightarrow x^4y^4+y^4z^4+z^4x^4+2x^2y^2z^2(x^2+y^2+z^2)\geq 3x^2y^2z^2(x^2+y^2+z^2)\)

\(\Leftrightarrow x^4y^4+y^4z^4+z^4x^4\geq x^2y^2z^2(x^2+y^2+z^2)\)

\(\Leftrightarrow \frac{1}{2}\left[ (x^2y^2-y^2z^2)^2+(y^2z^2-x^2z^2)^2+(x^2y^2-x^2z^2)^2\right]\geq 0\)

(luôn đúng)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(x=y=z=1\)

4 tháng 1 2018

đây là bài tổng quát nè bạn, áp dụng bài này nhé ^_^

https://olm.vn/hoi-dap/question/1123004.html