K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2016

toi choi bang bang ne ai toi cho nich cap 27 co picachu 5 chopper 5

23 tháng 2 2016

Cho tui ních đó đi

20 tháng 11 2019

Ta có:

\(P=\left(x-2\right)^2+\left(y-1\right)^2+\frac{\left(x-2\right)\left(4x-1\right)}{2x}+\frac{\left(x+y-3\right)\left(6x+6y-1\right)}{3\left(x+y\right)}+\frac{35}{6}\ge\frac{35}{6}\) (Sử dụng giả thiết)

Đẳng thức xảy ra khi x = 2; y = 1

18 tháng 8 2019

Trần Thanh Phương, Nguyễn Văn Đạt, ?Amanda?, svtkvtm,

Lightning Farron, Lê Thảo, Nguyễn Thị Diễm Quỳnh,

@Akai Haruma, @Nguyễn Việt Lâm

2 tháng 9 2015

\(\Rightarrow x^2+1=x^2+10x+25\)

\(\Rightarrow10x=-24\Rightarrow x=-2.4\)

2 tháng 9 2015

Đk : xác dịnh với mọi x 

pt <=> x^2 + 1 = x^2 + 10x + 25 

=> 10x = -24

=> x= -12/5 

6 tháng 7 2017

Câu hỏi của Ace Legona - Toán lớp 10 | Học trực tuyến

Vào đây tham khảo ! =))

8 tháng 7 2017

Ace Legona là thangbnsh, Thắng Nguyễn cũng là thangbnsh. Đặt câu hỏi làm gì v???

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

NV
20 tháng 1 2021

\(S=\dfrac{x}{2}+\dfrac{1}{2x}+\dfrac{y}{2}+\dfrac{2}{y}+\dfrac{1}{2}\left(x+y\right)\)

\(S\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{2y}{2y}}+\dfrac{1}{2}.3=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)

29 tháng 4 2019

x,y,z là số thực hay số dương vậy?

29 tháng 4 2019

Nếu x,y,z dương thì như sau:

Áp dụng bất đẳng thức phụ: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) ; \(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

Chứng minh: \(\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2+\left(\frac{c}{\sqrt{z}}\right)^2\right]\left(\sqrt{x}^2+\sqrt{y}^2+\sqrt{z}^2\right)\ge\left(a+b+c\right)^2\) (Bunyakovsky cho 3 số)
\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)+2\left(xy+yz+xz\right)\ge0\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)\ge\left(xy+yz+xz\right)\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)+2\left(xy+yz+xz\right)\ge3\left(xy+yz+xz\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

Ta có

\(\frac{1+x^2}{y+z}+\frac{1+y^2}{x+z}+\frac{1+z^2}{x+y}\ge\frac{2x}{y+z}+\frac{2y}{x+z}+\frac{2z}{x+y}\)

\(=\frac{x^2}{\frac{1}{2}\left(xy+xz\right)}+\frac{y^2}{\frac{1}{2}\left(xy+yz\right)}+\frac{z^2}{\frac{1}{2}\left(xz+yz\right)}\)
\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+xz}\ge\frac{3\left(xy+yz+xz\right)}{xy+yz+xz}=3\)
Dấu "=" xảy ra <=> x=y=z=1
Vậy GTNN của biểu thức trên là 3 khi x=y=z=1

Còn x,y,z là số thức thì không biết 

1 tháng 8 2017

2. Xem tại đây

1.  \(P=\frac{1}{\sqrt{x.1}}+\frac{1}{\sqrt{y.1}}+\frac{1}{\sqrt{z.1}}\)

\(\ge\frac{1}{\frac{x+1}{2}}+\frac{1}{\frac{y+1}{2}}+\frac{1}{\frac{z+1}{2}}\)

\(=\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{2.\left(1+1+1\right)^2}{x+y+z+3}=\frac{18}{3+3}=3\)

Đẳng thức xảy ra  \(\Leftrightarrow x=y=z=1\)

1 tháng 8 2017

1 ) có cách theo cosi đó 

áp dụng cosi cho 3 số dương ta có \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}\times\frac{1}{\sqrt{x}}\times x}=3\sqrt[3]{1}=3\)(1)

\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}+y\ge3\)(2)

\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}+z\ge3\)(3)

cộng các vế của (1),(2),(3), đc \(2\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)+\left(x+y+z\right)\ge9\Rightarrow2P+3\ge9\Rightarrow P\ge3\)

minP=3 khi x=y=z=1