Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(P=\left(x-2\right)^2+\left(y-1\right)^2+\frac{\left(x-2\right)\left(4x-1\right)}{2x}+\frac{\left(x+y-3\right)\left(6x+6y-1\right)}{3\left(x+y\right)}+\frac{35}{6}\ge\frac{35}{6}\) (Sử dụng giả thiết)
Đẳng thức xảy ra khi x = 2; y = 1
Trần Thanh Phương, Nguyễn Văn Đạt, ?Amanda?, svtkvtm,
Lightning Farron, Lê Thảo, Nguyễn Thị Diễm Quỳnh,
@Akai Haruma, @Nguyễn Việt Lâm
\(\Rightarrow x^2+1=x^2+10x+25\)
\(\Rightarrow10x=-24\Rightarrow x=-2.4\)
Đk : xác dịnh với mọi x
pt <=> x^2 + 1 = x^2 + 10x + 25
=> 10x = -24
=> x= -12/5
Câu hỏi của Ace Legona - Toán lớp 10 | Học trực tuyến
Vào đây tham khảo ! =))
Ace Legona là thangbnsh, Thắng Nguyễn cũng là thangbnsh. Đặt câu hỏi làm gì v???
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
\(S=\dfrac{x}{2}+\dfrac{1}{2x}+\dfrac{y}{2}+\dfrac{2}{y}+\dfrac{1}{2}\left(x+y\right)\)
\(S\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{2y}{2y}}+\dfrac{1}{2}.3=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)
Nếu x,y,z dương thì như sau:
Áp dụng bất đẳng thức phụ: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) ; \(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
Chứng minh: \(\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2+\left(\frac{c}{\sqrt{z}}\right)^2\right]\left(\sqrt{x}^2+\sqrt{y}^2+\sqrt{z}^2\right)\ge\left(a+b+c\right)^2\) (Bunyakovsky cho 3 số)
\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)+2\left(xy+yz+xz\right)\ge0\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)\ge\left(xy+yz+xz\right)\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)+2\left(xy+yz+xz\right)\ge3\left(xy+yz+xz\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
Ta có
\(\frac{1+x^2}{y+z}+\frac{1+y^2}{x+z}+\frac{1+z^2}{x+y}\ge\frac{2x}{y+z}+\frac{2y}{x+z}+\frac{2z}{x+y}\)
\(=\frac{x^2}{\frac{1}{2}\left(xy+xz\right)}+\frac{y^2}{\frac{1}{2}\left(xy+yz\right)}+\frac{z^2}{\frac{1}{2}\left(xz+yz\right)}\)
\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+xz}\ge\frac{3\left(xy+yz+xz\right)}{xy+yz+xz}=3\)
Dấu "=" xảy ra <=> x=y=z=1
Vậy GTNN của biểu thức trên là 3 khi x=y=z=1
Còn x,y,z là số thức thì không biết
2. Xem tại đây
1. \(P=\frac{1}{\sqrt{x.1}}+\frac{1}{\sqrt{y.1}}+\frac{1}{\sqrt{z.1}}\)
\(\ge\frac{1}{\frac{x+1}{2}}+\frac{1}{\frac{y+1}{2}}+\frac{1}{\frac{z+1}{2}}\)
\(=\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{2.\left(1+1+1\right)^2}{x+y+z+3}=\frac{18}{3+3}=3\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=z=1\)
1 ) có cách theo cosi đó
áp dụng cosi cho 3 số dương ta có \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}\times\frac{1}{\sqrt{x}}\times x}=3\sqrt[3]{1}=3\)(1)
\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}+y\ge3\)(2)
\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}+z\ge3\)(3)
cộng các vế của (1),(2),(3), đc \(2\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)+\left(x+y+z\right)\ge9\Rightarrow2P+3\ge9\Rightarrow P\ge3\)
minP=3 khi x=y=z=1
toi choi bang bang ne ai toi cho nich cap 27 co picachu 5 chopper 5
Cho tui ních đó đi