K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

Thay x=2 vào biểu thức

\(x^3+4x^2-3x-18=2^3+4.2^2-3.2-18=8+16-6-18=0\)

Do x=2 cho ta \(x^3+4x^2-3x-18=0\) nên với mọi x lớn hơn hoặc bằng 2 ta luôn thu đc biểu thức lớn hơn hoặc bằng 0

29 tháng 7 2017

\(x^3+4x^2-3x-18\ge0\)

\(\Leftrightarrow x^3+6x^2+9x-2x^2-12x-18\ge0\)

\(\Leftrightarrow x\left(x^2+6x+9\right)-2\left(x^2+6x+9\right)\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+6x+9\right)\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)^2\ge0\)

Từ \(\left\{{}\begin{matrix}x\ge2\Rightarrow x-2\ge0\\\left(x+3\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)\left(x+3\right)^2\ge0\forall x\ge2\) (Đúng !!)

30 tháng 10 2016

x3+4x2-3x-18

Q(x)=x3+4x2-3x-18

Ta thấy: Q(-2)=(-2)3+4*(-2)2-3*(-2)-18=0

Nên chia Q cho x-2 ta được:

=(x-2)(x2+6x+9)

=(x-2)(x+3)2\(\ge\)0 với mọi x\(\ge\)2

 

a: \(-3x^2\ge0\)

\(\Leftrightarrow x^2< =0\)

=>x=0

b: \(\dfrac{-5}{4x^2}\ge0\)

\(\Leftrightarrow4x^2< 0\)(vô lý)

c: \(\dfrac{4}{x+3}>=0\)

=>x+3>0

hay x>-3

d: \(\dfrac{-5}{2x-1}>=0\)

=>2x-1<0

hay x<1/2

e: \(\dfrac{-2}{x^2+1}>=0\)

=>x2+1<0(vô lý)

f: \(\dfrac{10}{x^2+9}>=0\)

=>x2+9>0(luôn đúng)

 

22 tháng 3 2020

sai đề hết??ucche

a: \(-3x^2\ge0\)

\(\Leftrightarrow x^2< =0\)

=>x=0

b: \(\dfrac{-5}{4x^2}\ge0\)

\(\Leftrightarrow4x^2< 0\)(vô lý)

c: \(\dfrac{4}{x+3}>=0\)

=>x+3>0

hay x>-3

d: \(\dfrac{-5}{2x-1}>=0\)

=>2x-1<0

hay x<1/2

e: \(\dfrac{-2}{x^2+1}>=0\)

=>x2+1<0(vô lý)

f: \(\dfrac{10}{x^2+9}>=0\)

=>x2+9>0(luôn đúng)

1 tháng 3 2018

có : \(x\ge0\)

\(\Rightarrow x^3+4x\ge0\)

\(\Rightarrow\)\(x^3+4x+1\ge1\)

có  \(3x^2\ge0\) ( vì x >=0)

suy ra

\(x^3+4x+1\ge3x^2\)

     

6 tháng 6 2018

Bài 1. a) 4x - 3 = 0

⇔ x = \(\dfrac{3}{4}\)

KL.....

b) - x + 2 = 6

⇔ x = - 4

KL...

c) -5 + 4x = 10

⇔ 4x = 15

⇔ x = \(\dfrac{15}{4}\)

KL....

d) 4x - 5 = 6

⇔ 4x = 11

⇔ x = \(\dfrac{11}{4}\)

KL....

h) 1 - 2x = 3

⇔ -2x = 2

⇔ x = -1

KL...

Bài 2. a) ( x - 2)( 4 + 3x ) = 0

⇔ x = 2 hoặc x = \(\dfrac{-4}{3}\)

KL......

b) ( 4x - 1)3x = 0

⇔ x = 0 hoặc x = \(\dfrac{1}{4}\)

KL.....

c) ( x - 5)( 1 + 2x) = 0

⇔ x = 5 hoặc x = \(\dfrac{-1}{2}\)

KL.....

d) 3x( x + 2) = 0

⇔ x = 0 hoặc x = -2

KL.....

6 tháng 6 2018

Bài 3.a) 3( x - 4) - 2( x - 1) ≥ 0

⇔ x - 10 ≥ 0

⇔ x ≥ 10

0 10 b) 3 - 2( 2x + 3) ≤ 9x - 4

⇔ - 4x - 3 ≤ 9x - 4

⇔ 13x ≥1

⇔ x ≥ \(\dfrac{1}{13}\)

0 1/13

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

a)

\(A=4x^2-4x+1=2x(2x-3)+2x+1=2x(2x-3)+(2x-3)+4\)

\(=(2x+1)(2x-3)+4\)

Với \(x\geq \frac{3}{2}\Rightarrow \left\{\begin{matrix} 2x+1>0\\ 2x-3\geq 0\end{matrix}\right.\Rightarrow A=(2x+1)(2x-3)+4\geq 4\)

Vậy GTNN của $A$ là $4$ khi $x=\frac{3}{2}$

b)

\(B=5x^2-10x+3=5(x^2-2x+1)-2\)

\(=5(x-1)^2-2\)

Ta thấy \((x-1)^2\geq 0, \forall x\geq 1\Rightarrow B=5(x-1)^2-2\geq -2\)

Vậy GTNN của $B$ là $-2$ khi $(x-1)^2=0\Leftrightarrow x=1$

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

c)

\(C=4x^2-6x+2=(2x)^2-2.2x.\frac{3}{2}+(\frac{3}{2})^2-\frac{1}{4}\)

\(=(2x-\frac{3}{2})^2-\frac{1}{4}\)

Ta thấy \((2x-\frac{3}{2})^2\geq 0, \forall x\geq 0\Rightarrow C=(2x-\frac{3}{2})^2-\frac{1}{4}\geq -\frac{1}{4}\)

Vậy GTNN của $C$ là $\frac{-1}{4}$ khi \((2x-\frac{3}{2})^2=0\Leftrightarrow x=\frac{3}{4}\)

d)

\(D=3x^2+2x+1=3(x^2+\frac{2}{3}x+\frac{1}{9})+\frac{2}{3}\)

\(=3(x+\frac{1}{3})^2+\frac{2}{3}\)

Ta thấy \((x+\frac{1}{3})^2\geq 0, \forall x\geq -1\Rightarrow D=3(x+\frac{1}{3})^2+\frac{2}{3}\geq \frac{2}{3}\)

Vậy GTNN của $D$ là $\frac{2}{3}$ khi $(x+\frac{1}{3})^2=0\Leftrightarrow x=-\frac{1}{3}$

3 tháng 4 2022

Bài 3:

\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)

\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)

 

3 tháng 4 2022

-Tham khảo:

undefined