\(x\ge1,y\ge1\).CMR \(x\sqrt{y-1}+y\sqrt{x-1}\ge xy\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2016

Áp dụng bđt Cauchy : \(\sqrt{\left(y-1\right).1}\le\frac{y-1+1}{2}=\frac{y}{2}\Rightarrow x\sqrt{y-1}\le\frac{xy}{2}\)

\(\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\Rightarrow y\sqrt{x-1}\le\frac{xy}{2}\)

Cộng hai BĐT trên theo vế ta có đpcm

10 tháng 10 2016

cảm ơn nhiều nha

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

Lời giải:

Áp dụng BĐT Bunhiacopxky ta có:

$(x\sqrt{y-1}+y\sqrt{x-1})^2=(\sqrt{x}.\sqrt{xy-x}+\sqrt{y}.\sqrt{yx-y})^2$

$\leq (x+y)(xy-x+xy-y)\leq \left(\frac{x+y+xy-x+xy-y}{2}\right)^2=(xy)^2$

$\Rightarrow x\sqrt{y-1}+y\sqrt{x-1}\leq xy$ (đpcm)

Dấu "=" xảy ra khi $x=y=2$

NV
16 tháng 7 2020

\(x.1.\sqrt{y-1}+y.1.\sqrt{x-1}\le\frac{x}{2}\left(1+y-1\right)+\frac{y}{2}\left(1+x-1\right)=xy\)

Dấu "=" xảy ra khi \(x=y=2\)

6 tháng 8 2019

Áp dụng cô si

\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\\\frac{1}{c}+\frac{1}{b}\ge2\sqrt{\frac{1}{cb}}\\\frac{1}{a}+\frac{1}{c}\ge2\sqrt{\frac{1}{ac}}\end{cases}}\)\(\Rightarrow\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}\)

\("="\Leftrightarrow a=b=c=0\)

\(\hept{\begin{cases}\sqrt{x}\le\frac{x+1}{2}\\\sqrt{y-1}\le\frac{y-1+1}{2}\\\sqrt{z-2}\le\frac{z-2+1}{2}\end{cases}}\)\(\Rightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+1+y-1+1+z-2+1}{2}\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+y+z}{2}\)

\("="\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)

18 tháng 10 2020

Sửa ĐK của c) : a, b, c > 0

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}=\frac{2}{\sqrt{ab}}\)

\(\frac{1}{b}+\frac{1}{c}\ge2\sqrt{\frac{1}{bc}}=\frac{2}{\sqrt{bc}}\)

\(\frac{1}{c}+\frac{1}{a}\ge2\sqrt{\frac{1}{ca}}=\frac{2}{\sqrt{ca}}\)

Cộng các vế tương ứng

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ab}}+\frac{2}{\sqrt{bc}}+\frac{2}{\sqrt{ca}}\)

=> \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)

=> đpcm

Đẳng thức xảy ra khi a = b = c

2 tháng 12 2017

\(\Leftrightarrow\frac{4}{x\left(y+z\right)}\ge1\)

mà \(x\left(y+z\right)\le\frac{\left(x+y+z\right)^2}{4}\)

\(\Rightarrow\frac{4}{x\left(y+z\right)}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=\frac{16}{\left(x+y+z\right)^2}=\frac{16}{16}=1\left(đpcm\right)\)

2 tháng 12 2017

Tuyển ơi, m giải cho ai thế

20 tháng 12 2015

Áp dụng bất đẳng thức Cô si ta có

\(\sqrt{y-1}=\sqrt{\left(y-1\right).1}\le\frac{y-1+1}{2}=\frac{y}{2}\)

=>\(x\sqrt{y-1}\le\frac{xy}{2}\)

Áp dụng BĐT cô si ta có

\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)

=>\(y\sqrt{x-1}+x\sqrt{y-1}\le\frac{xy}{2}+\frac{xy}{2}=xy\)

Dấu ''='' xảy ra <=>x=y=1

3 tháng 1 2016

Hùng Hoàng

Câu hỏi khác của Hùng Hoàng