Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{\sqrt{y-1}}{y}\le\frac{1+y-1}{2y}=\frac{1}{2}\)
\(\frac{\sqrt{x-1}}{x}\le\frac{1}{2}\)
\(\Rightarrow A\le1\)
Đạt được khi x = y = 2
cái này mk chưa hok nên ko thể giải!!!!!!! mong bạn thông cảm ^^
547476576578587592375632252535653256205155916524235598354641545622
pt\(\Leftrightarrow\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\)
Áp dụng BĐT cô si cho 2 số ko âm ta có:
\(\sqrt{x-1}=\sqrt{1\left(x-1\right)}\le\frac{x+1-1}{2}=\frac{x}{2}\)
\(\Rightarrow\frac{\sqrt{x-1}}{x}\le\frac{1}{2}\)(vì x dương)
\(\sqrt{y-4}=\frac{1}{2}\sqrt{4\left(y-4\right)}\le\frac{1}{2}.\frac{4+y-4}{2}=\frac{y}{4}\)
\(\Rightarrow\frac{\sqrt{y-4}}{y}\le\frac{1}{4}\)(vì y dương)
\(\Rightarrow Q=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\le\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
Vậy \(Q\)max là \(\frac{3}{4}\)khi \(x=2,y=8\)
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
\(x^2-1=\frac{1}{4}\left(a^2+\frac{1}{a^2}+2\right)-1=\frac{1}{4}\left(a^2+\frac{1}{a^2}-2\right)=\frac{1}{4}\left(a-\frac{1}{a}\right)^2\)
Tương tự \(y^2-1=\frac{1}{4}\left(b-\frac{1}{b}\right)^2\)
\(P=\frac{\frac{1}{4}\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)-\frac{1}{4}\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)}{\frac{1}{4}\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)+\frac{1}{4}\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)}\)
\(=\frac{ab+\frac{a}{b}+\frac{b}{a}+\frac{1}{ab}-ab+\frac{a}{b}+\frac{b}{a}-\frac{1}{ab}}{ab+\frac{a}{b}+\frac{b}{a}+\frac{1}{ab}+ab-\frac{a}{b}-\frac{b}{a}+\frac{1}{ab}}=\frac{\frac{a}{b}+\frac{b}{a}}{ab+\frac{1}{ab}}=\frac{a^2+b^2}{a^2b^2+1}\)
theo bất đẳng thức bunhiacopxki ta có
3\(\sqrt{x-1}\)+4\(\sqrt{y-1}\)\(\le\)\(\sqrt{\left(3^2+4^2\right)\left(x-1+y-1\right)}\)=5\(\sqrt{x+y-2}\)
<=>1\(\le\sqrt{x+y-2}\)
<=>1\(\le\)x+y-2
<=>x+y\(\ge\)3
\(y=\frac{x-1+3\sqrt{x-1}+2}{x-1+4\sqrt{x-1}+3}\)
đặt x-1=a(a>=0)
=>\(y=\frac{a+3\sqrt{a}+2}{a+4\sqrt{a}+3}\)
=>\(\left(y-1\right)a+\left(4y-3\right)\sqrt{a}+3y-2=0\)
đến đây dùng pp tìm miền giá trị tìm y là ra
https://loga.vn/bai-viet/ve-phuong-phap-mien-gia-tri-de-tim-gtln-gtnn-4059
Với \(x=y=2\Rightarrow A=8\)
Ta cm \(A=8\) là GTNN của \(A\)
Thật vậy ta cần chứng minh \(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\)
Mà \(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)
Cần chứng minh \(\frac{\left(x+y\right)^2}{x+y-2}\ge8\Leftrightarrow\frac{\left(x+y-4\right)^2}{x+y-2}\ge0\left(x;y\ge1\right)\)
BĐT cuối cùng luôn đúng -->Min=8 khi x=y=2
Lời giải:
ĐK phải là $x,y>1$. Nếu $x,y=1$ thì vi phạm ĐKXĐ rồi bạn nhé.
Áp dụng BĐT AM-GM cho các số dương:
\(\frac{x}{\sqrt{y}-1}+4(\sqrt{y}-1)\geq 4\sqrt{x}\)
\(\frac{y}{\sqrt{x}-1}+4(\sqrt{x}-1)\geq 4\sqrt{y}\)
Cộng theo vế và rút gọn ta có:
\(A\geq 8\)
Vậy GTNN của $A$ là $8$. Dấu "=' xảy ra khi $x=y=4$