Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức (2) ta có
A = \(\sqrt{x-1}+\sqrt{2x^2-5x+7}\)
\(\ge\sqrt{2x^2-4x+6}=\sqrt{2\left(x-1\right)^2+4\ge2}\)
Dấu "=" xảy ra khi x = 1
Vậy MinA = 2 khi x = 1
Cbht
\(S=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)
\(S\ge\frac{4\left(x+y\right)^2}{x^2+y^2+2xy}+\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}}=\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\) khi \(x=y\)
câu b đk x>= -1/4
\(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)
\(x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=2\)
\(\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=2\)
\(x+\dfrac{1}{4}=\left(\sqrt{2}-\dfrac{1}{2}\right)^2\)
\(x=\left(\sqrt{2}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
\(x=\left(\sqrt{2}-\dfrac{1}{2}-\dfrac{1}{2}\right)\left(\sqrt{2}-\dfrac{1}{2}+\dfrac{1}{2}\right)\)
\(x=\sqrt{2}\left(\sqrt{2}-1\right)=2-\sqrt{2}\)
a: \(=3xy\cdot\dfrac{\sqrt{2}}{\sqrt{xy}}=3\sqrt{2}\sqrt{xy}\)
b: \(=x\cdot\dfrac{\sqrt{6}}{\sqrt{x}}+\dfrac{\sqrt{6}}{3}\sqrt{x}\)
\(=\sqrt{6}\sqrt{x}+\dfrac{\sqrt{6}}{3}\sqrt{x}=\dfrac{4\sqrt{6}}{3}\cdot\sqrt{x}\)
c: \(=\sqrt{xy}+x\cdot\dfrac{\sqrt{y}}{\sqrt{x}}-y\cdot\dfrac{\sqrt{x}}{\sqrt{y}}\)
\(=\sqrt{xy}+\sqrt{xy}-\sqrt{xy}=\sqrt{xy}\)
Lời giải:
ĐK phải là $x,y>1$. Nếu $x,y=1$ thì vi phạm ĐKXĐ rồi bạn nhé.
Áp dụng BĐT AM-GM cho các số dương:
\(\frac{x}{\sqrt{y}-1}+4(\sqrt{y}-1)\geq 4\sqrt{x}\)
\(\frac{y}{\sqrt{x}-1}+4(\sqrt{x}-1)\geq 4\sqrt{y}\)
Cộng theo vế và rút gọn ta có:
\(A\geq 8\)
Vậy GTNN của $A$ là $8$. Dấu "=' xảy ra khi $x=y=4$
theo bất đẳng thức bunhiacopxki ta có
3\(\sqrt{x-1}\)+4\(\sqrt{y-1}\)\(\le\)\(\sqrt{\left(3^2+4^2\right)\left(x-1+y-1\right)}\)=5\(\sqrt{x+y-2}\)
<=>1\(\le\sqrt{x+y-2}\)
<=>1\(\le\)x+y-2
<=>x+y\(\ge\)3
Sử dụng BĐT Cauchy-Schwarz, ta có:
\(VP=\sqrt{x}.\sqrt{1-\dfrac{1}{x}}+\sqrt{y}.\sqrt{1-\dfrac{1}{y}}+\sqrt{z}.\sqrt{1-\dfrac{1}{z}}\le\sqrt{\left(x+y+z\right)\left(1-\dfrac{1}{x}+1-\dfrac{1}{y}+1-\dfrac{1}{z}\right)}=\sqrt{x+y+z}=VT\)
Chứng minh hoàn tất.
\(A=\sqrt{\left(x-2\right)\left(x-1\right)x\left(x+1\right)+5}\)
\(=\sqrt{\left(x^2-x-2\right)\left(x^2-x\right)+5}\)
Đặt \(t=x^2-x\) ta đc:
\(A=\sqrt{\left(t-2\right)t+5}=\sqrt{t^2-2t+5}\)
\(=\sqrt{\left(t-1\right)^2+4}\ge\sqrt{4}=2\)
Dấu = khi \(t=1\Leftrightarrow x^2-x=1\Leftrightarrow x=\pm\frac{1}{2}+\frac{\sqrt{5}}{2}\)
Vậy....
b)\(B=\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}\)
\(=\sqrt{\left(x-2\right)^2}+\sqrt{\left(x+3\right)^2}\)
\(=\left|x-2\right|+\left|x+3\right|\)
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2\right|+\left|x+3\right|=\left|x-2\right|+\left|-x-3\right|\ge\left|x-2+\left(-x\right)-3\right|=5\)
Dấu = khi \(\left(x-2\right)\left(x+3\right)\ge0\)\(\Rightarrow-3\le x\le2\)
\(\Rightarrow\hept{\begin{cases}-3\le x\le2\\\left(x+3\right)\left(x-2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=2\end{cases}}\)
Vậy....
\(A=\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\)
\(\Rightarrow x+\left(1-A\right)\sqrt{x}+A=0\)
\(\Rightarrow\left(1-A\right)^2-4A\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}A\le3-2\sqrt{2}\\A\ge3+2\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow A_{min}=3+2\sqrt{2}\)