K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2019

B = x + 1 / 3x + 4 

B = ( 3x+ 1 + 12x ) / 3x ( Quy đồng phân thức )

Để B đạt giá trị nhỏ nhất 

\(\Leftrightarrow\)3x2 + 12x + 1 đạt giá trị lớn nhất

Ta có : 

D = 3x2 + 12x + 1

D = 3 . ( x2 + 4x + 1 / 3 )

D = 3 . [ ( x2 + 2 . x . 2 + 22 - 22 + 1 / 3 ]

D = 3 . [ ( x + 2 )2 - 11 / 3 ]

D = ( x + 2 )2 - 11 \(\le\)- 11

Dấu " = " xảy ra \(\Leftrightarrow\)x + 2 = 0

                             \(\Rightarrow\)x        = - 2

Do đó : Max D = - 11 \(\Leftrightarrow\)x = - 2

Vậy : Min A = - 11 / [ 3 . ( - 2 ) ] = 11 / 6 \(\Leftrightarrow\)x = - 2 

#Chắc Thế Sai Thì Thôi#

NV
21 tháng 5 2019

\(A=x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\)

\(\Rightarrow A_{min}=2\) khi \(x=1\)

b/ \(x\le\frac{1}{2}\Rightarrow\frac{1}{x}\ge2\)

\(B=x^2+\frac{1}{x}=x^2+\frac{1}{8x}+\frac{1}{8x}+\frac{3}{4x}\ge3\sqrt[3]{\frac{x^2}{64x^2}}+\frac{3}{4}.2=\frac{9}{4}\)

\(B_{min}=\frac{9}{4}\) khi \(x=\frac{1}{2}\)

c/

\(C=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\ge3\sqrt[3]{\frac{x}{2}.\frac{x}{2}.\frac{1}{x^2}}=\frac{3}{\sqrt[3]{4}}\)

\(C_{min}=\frac{3}{\sqrt[3]{4}}\) khi \(\frac{x}{2}=\frac{1}{x^2}\Leftrightarrow x=\sqrt[3]{2}\)

d/

\(x\le\frac{1}{4}\Rightarrow\frac{1}{x}\ge4\Rightarrow\frac{1}{x^2}\ge16\)

\(D=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{128x^2}+\frac{127}{128x^2}\ge3\sqrt[3]{\frac{x^2}{2.2.128x^2}}+\frac{127}{128}.16=\frac{65}{4}\)

\(D_{min}=\frac{65}{4}\) khi \(x=\frac{1}{4}\)

9 tháng 11 2016

a/ \(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}.\frac{18}{x}}=...\)

b/ \(\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}.\frac{2}{x-1}}+\frac{1}{2}=...\)

c/ \(\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2}.\frac{1}{x+1}}-\frac{3}{2}=...\)

d/ \(\frac{x}{3}+\frac{5}{2x-1}=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{2x-1}{6}.\frac{5}{2x-1}}+\frac{1}{6}=...\)

e/ \(\frac{x}{1-x}+\frac{5}{x}=\frac{x}{1-x}+\frac{5-5x+5x}{x}=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+5\ge2\sqrt{\frac{x}{1-x}.\frac{5\left(1-x\right)}{x}}+5=...\)

f/ \(\frac{x^3+1}{x^2}=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\ge2\sqrt{\frac{x}{2}.\frac{x}{2}.\frac{1}{x^2}}=...\)

g/ \(\frac{x^2+4x+4}{x}=x+\frac{4}{x}+4\ge2\sqrt{x.\frac{4}{x}}+4=...\)

AH
Akai Haruma
Giáo viên
7 tháng 7 2017

Lời giải:

Đặt \((x,y,z)=(a+1,b+1,c+1)\Rightarrow a,b,c\geq 0\)

Ta có:

\(3x^2+4y^2+5z^2=52\Leftrightarrow 3(a+1)^2+4(b+1)^2+5(c+1)^2=52\)

\(\Leftrightarrow 3a^2+4b^2+5c^2+6a+8b+10c=40\)

\(\Leftrightarrow 5(a+b+c)^2+10(a+b+c)=40+2a^2+b^2+10(ab+bc+ac)+4a+2b\)

\(\Rightarrow 5(a+b+c)^2+10(a+b+c)\geq 40\Leftrightarrow a+b+c\geq 2\)

Do đó \(x+y+z=a+b+c+3\geq 5\)

Vậy \(F_{\min}=5\Leftrightarrow x=y=1,z=3\)

4 tháng 2 2016

nhiều quá bạn ơi , bạn k biết câu nào mình giải zúp cho 

4 tháng 2 2016

hết luôn đó bạn Ngọc Vi ... nhưng bạn giúp được câu nào thì mình cảm ơn

8 tháng 7 2020

\(P=\frac{16a}{3}+\frac{1}{b}+\frac{4}{4c}\ge\frac{16a}{9}+\frac{16a}{9}+\frac{16a}{9}+\frac{9}{b+4c}\ge4\sqrt[4]{\frac{4096}{81}.\frac{a^3}{b+4c}}=\frac{32}{3}\)

"=" \(\Leftrightarrow\)\(\left(a;b;c\right)=\left(\frac{3}{2};\frac{9}{8};\frac{9}{16}\right)\)

NV
3 tháng 4 2020

a/

\(\Leftrightarrow\frac{\left(x^2-1\right)\left(x^2+1\right)}{x^2+3x}+x^2-1\ge0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{x^2+1}{x^2+3x}+1\right)\ge0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{2x^2+3x+1}{x^2+3x}\right)\ge0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(2x+1\right)}{x\left(x+3\right)}\ge0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(2x+1\right)\left(x+1\right)^2}{x\left(x+3\right)}\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x< -3\\x=-1\\-\frac{1}{2}\le x< 0\\x\ge1\end{matrix}\right.\)

NV
3 tháng 4 2020

b/

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)\left(\frac{-2-2x}{x}\right)\le0\)

\(\Leftrightarrow\frac{-2.\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+1\right)}{x}\le0\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)\left(x-2\right)\left(x+1\right)^2}{x}\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\le-2\\x=-1\\0< x\le1\\x\ge2\end{matrix}\right.\)

c/

\(\Leftrightarrow\left(\frac{4\left(x-1\right)-2x}{x\left(x-1\right)}\right)\left(\frac{x^2+1-2x}{x}\right)\le0\)

\(\Leftrightarrow\frac{\left(2x-4\right)\left(x-1\right)^2}{x^2\left(x-1\right)}\le0\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)^2}{x^2\left(x-1\right)}\le0\)

\(\Rightarrow1< x\le2\)