\(x\ge y\ge z>0.CMR:\frac{x^2y}{2}+\frac{y^2z}{2}+\frac{z^2x}{2}\ge\left(x^2+y^2+z^2\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

KON 'NICHIWA ON" NANOKO: chào cô

26 tháng 10 2019

Bài này dùng Cauchy ngược dấu:

\(\Sigma\frac{2x^2}{x+y^2}=\Sigma\frac{2x\left(x+y^2\right)-2xy^2}{x+y^2}=2\left(x+y+z\right)-2.\Sigma\frac{xy^2}{x+y^2}\)

Từ đây ta có thể quy bđt vế chứng minh: \(\Sigma\frac{xy^2}{x+y^2}\le\frac{x+y+z}{2}\)

Ta có: \(VT\le\Sigma\frac{xy^2}{2\sqrt{xy^2}}=\Sigma\frac{\sqrt{xy.y}}{2}\le\frac{xy+yz+zx+x+y+z}{4}\)

Như vậy cần chứng minh: \(xy+yz+zx\le x+y+z\)

Ta có: \(VT=\sqrt{\left(xy+yz+zx\right)^2}\le\sqrt{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}=\sqrt{3\left(xy+yz+zx\right)}\le x+y+z\)

Từ đây có đpcm:)

NV
14 tháng 5 2020

\(\sqrt{x^2+y^2+y^2}\ge\sqrt{3\sqrt[3]{x^2y^4}}=\sqrt{3}.\sqrt[3]{xy^2}\)

\(\Rightarrow VT\ge\sqrt{3}\left(\frac{\sqrt[3]{xy^2}}{z}+\frac{\sqrt[3]{yz^2}}{x}+\frac{\sqrt[3]{zx^2}}{y}\right)\)

\(\Rightarrow VT\ge3\sqrt{3}\sqrt[3]{\frac{\sqrt[3]{xy^2.yz^2.zx^2}}{xyz}}=3\sqrt{3}.\sqrt[3]{\frac{\sqrt[3]{x^3y^3z^3}}{xyz}}=3\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z\)

14 tháng 5 2020

@Nguyễn Việt Lâm

22 tháng 5 2017

\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge\frac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}=x+y+z\)

CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)\(\Rightarrow x^2+y^2+z^2\ge1\)\(\Rightarrow...
Đọc tiếp

CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)

CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)

ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)

ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)

\(\Rightarrow x^2+y^2+z^2\ge1\)

\(\Rightarrow A=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{z^2+y^2}\)

TA CÓ:

\(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\le\frac{1}{\sqrt{2}}\sqrt{\frac{\left(2x^2+2y^2+2z^2\right)^3}{27}}=\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)TƯƠNG TỰ:

\(y\left(x^2+z^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2},z\left(x^2+y^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)LẠI CÓ:
\(A=\frac{x^3}{y^2+z^2}+\frac{y^3}{x^2+z^2}+\frac{z^3}{x^2+y^2}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(x^2+z^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)}\ge\frac{1}{3.\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}} \)\(\ge\frac{\sqrt{3}}{2}\sqrt{x^2+y^2+z^2}\ge\frac{\sqrt{3}}{2}\)

DẤU BẰNG XẢY RA\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\Rightarrow DPCM\)

 

2
10 tháng 9 2018

tự ra câu hởi tự trả lời à bạn

10 tháng 9 2018

tại tui trả lời bài này cho 1 bạn ở trên facebook nên phải chụp màn hình lại nên làm v á

NV
29 tháng 6 2020

\(z\ge x+y\Rightarrow\frac{z}{x+y}\ge1\)

\(VT=\left(x^2+y^2+z^2\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)

\(VT\ge\left(\frac{1}{2}\left(x+y\right)^2+z^2\right)\left(\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)^2+\frac{1}{z^2}\right)\)

\(VT\ge\left(\frac{1}{2}\left(x+y\right)^2+z^2\right)\left(\frac{8}{\left(x+y\right)^2}+\frac{1}{z^2}\right)\)

\(VT\ge\frac{1}{2}\left(\frac{x+y}{z}\right)^2+8\left(\frac{z}{x+y}\right)^2+5\)

\(VT\ge\frac{1}{2}\left(\frac{x+y}{z}\right)^2+\frac{1}{2}\left(\frac{z}{x+y}\right)^2+\frac{15}{2}\left(\frac{z}{x+y}\right)^2+5\)

\(VT\ge\frac{1}{2}.2\sqrt{\left(\frac{x+y}{z}\right)^2\left(\frac{z}{x+y}\right)^2}+\frac{15}{2}.1^2+5=\frac{27}{2}\)

Dấu "=" xảy ra khi \(x=y=\frac{z}{2}\)

18 tháng 3 2018

1 slot tối làm cho :))

Bài này trích trong đề thi HSG Toán 9 tỉnh Thanh Hóa

18 tháng 3 2018

Như đã hứa,giờ làm cho :))

BĐT\(\Leftrightarrow\frac{xz}{y^2+yz}+\frac{y}{xz+yz}+\frac{z}{x+z}\ge\frac{3}{2}\).Đặt \(\frac{x}{y}=a>0;\frac{y}{z}=b>0\)\(\Rightarrow ab=\frac{x}{z}\ge1\)

Ta có BĐT:\(\frac{1}{\frac{y^2}{xz}+\frac{y}{x}}+\frac{1}{\frac{xz}{y^2}+\frac{z}{y}}+\frac{1}{1+\frac{x}{z}}\ge\frac{3}{2}\)

\(\Rightarrow\frac{1}{\frac{b}{a}+\frac{1}{a}}+\frac{1}{\frac{a}{b}+\frac{1}{b}}+\frac{1}{ab+1}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{a}{b+1}+\frac{b}{a+1}+\frac{1}{ab+1}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a^2}{ab+a}+\frac{b^2}{ab+b}+\frac{1}{ab+1}\ge\frac{3}{2}\).Áp dụng BĐT Bunhiacopxki mở rộng ta có:

\(\frac{a^2}{ab+a}+\frac{b^2}{ab+b}\ge\frac{\left(a+b\right)^2}{2ab+a+b}\).Ta cần chứng minh:\(\frac{\left(a+b\right)^2}{2ab+a+b}\ge\frac{2\left(a+b\right)}{a+b+2}\)(*).Thật vậy:

(*)\(\Rightarrow\frac{a+b}{2ab+a+b}\ge\frac{2}{a+b+2}\Leftrightarrow\left(a+b\right)\left(a+b+2\right)\ge2\left(2ab+a+b\right)\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Nên \(\frac{a^2}{ab+a}+\frac{b^2}{ab+b}+\frac{1}{ab+1}\ge\frac{2\left(a+b\right)}{a+b+2}+\frac{1}{ab+1}\)\(\ge\frac{2\left(a+b\right)}{a+b+2}+\frac{4}{4+\left(a+b\right)^2}\)

Đặt \(m=a+b\ge2\sqrt{ab}\ge2\).Ta cần chứng minh:\(\frac{2m}{m+2}+\frac{4}{4+m^2}\ge\frac{3}{2}\)(**).Thật vậy

(**)\(\Leftrightarrow\frac{2m}{m+2}+\frac{3m^2+4}{2m^2+8}\ge0\)\(\Leftrightarrow\frac{2m\left(2m^2+8\right)-\left(m+2\right)\left(3m^2+4\right)}{\left(m+2\right)\left(2m^2+8\right)}\ge0\)

\(\Leftrightarrow\frac{\left(m-2\right)^3}{\left(m+2\right)\left(2m^2+8\right)}\ge0\) đúng với mọi \(m\ge2\)

Vậy BĐT đã được chứng minh.Dấu "=" xảy ra khi chỉ khi x=y=z