\(x=\frac{b^2+c^2-a^2}{2bc}\);\(y=\frac{a^2-\left(b-c\right)^2}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

Ta có

x+1=b2+c2a22bc+1=b2+2bc+c2a22bc=(b+c)2a22bcx+1=b2+c2−a22bc+1=b2+2bc+c2−a22bc=(b+c)2−a22bc

Suy ra

y(x+1)=a2(bc)2(b+c)2a2.(b+c)2a22bc=a2(bc)22bcy(x+1)=a2−(b−c)2(b+c)2−a2.(b+c)2−a22bc=a2−(b−c)22bc

Do đó

P=x+y+xy=x+y(x+1)=b2+c2a22bc+a2(bc)22bc=b2+c2a2+a2(bc)22bc=1

12 tháng 3 2017

Làm như bạn trên hướng dẫn ấy:

Ta có: \(x+1=\frac{b^2+c^2-a^2}{2bc}+1=\frac{\left(b+c\right)^2-a^2}{2bc}\)

\(y+1=\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}+1=\frac{4bc}{\left(b+c\right)^2-a^2}\)

\(\Rightarrow\left(x+1\right)\left(y+1\right)=\frac{\left(b+c\right)^2-a^2}{2bc}.\frac{4bc}{\left(b+c\right)^2-a^2}=2\)

\(\Rightarrow P=\left(x+1\right)\left(y+x\right)-1=2-1=1\)

10 tháng 3 2017

Bạn tính x+1 và y+1 

Rồi nhân vào sẽ ra kết quả là 1

k cho mình nha!

3 tháng 4 2016

bo bot y =

3 tháng 4 2016

Gợi ý: \(P+1=\left(x+1\right)\left(y+1\right)\)

24 tháng 1 2016

Đặt  \(t=b^2+c^2-a^2\)  và  \(k=2bc\) , ta có:

\(x=\frac{t}{k};\) \(y=\frac{a^2-b^2+2bc-c^2}{b^2+2bc+c^2-a^2}=\frac{2bc-\left(b^2+c^2-a^2\right)}{2bc+\left(b^2+c^2-a^2\right)}=\frac{k-t}{k+t}\)

nên   \(P=\frac{t}{k}+\frac{k-t}{k+t}+\frac{t\left(k-t\right)}{k\left(k+t\right)}=\frac{t\left(k+t\right)+k\left(k-t\right)+t\left(k-t\right)}{k\left(k+t\right)}=\frac{t\left(k+t\right)+\left(k-t\right)\left(k+t\right)}{k\left(k+t\right)}=\frac{k\left(k+t\right)}{k\left(k+t\right)}=1\)

Vậy,   \(P=1\)

8 tháng 11 2015

Đặt \(b^2+c^2-c^2=t;2bc=u\), ta có:

\(x=\frac{t}{u};y=\frac{a^2-b^2-c^2+2bc}{b^2+c^2-a^2+2bc}=\frac{2bc-\left(b^2+c^2-a^2\right)}{2bc+\left(b^2+c^2-a^2\right)}=\frac{u-t}{u+t}\)

nên \(P=x+y+xy=x+1+y\left(x+1\right)-1=\left(x+1\right)\left(y+1\right)-1\)

\(P=\left(\frac{t}{u}+1\right)\left(\frac{u-t}{u+t}+1\right)-1=\frac{t+u}{u}.\frac{2u}{u+1}-1=2-1=1\)