Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=\left(\sqrt{3}+\sqrt{2}\right)^2=5+2\sqrt{6}\)
\(y=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=\left(\sqrt{3}-\sqrt{2}\right)^2=5-2\sqrt{6}\)
\(S=5\left(5+2\sqrt{6}\right)^2+6\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)+5\left(5-2\sqrt{6}\right)^2\)
\(=5\left(49+20\sqrt{6}\right)+6+5\left(49-20\sqrt{6}\right)\)
\(=245+245+6=496\)
Lời giải:
Ta có: \(5x^2+6xy+5y^2=3(x^2+y^2+2xy)+2(x^2+y^2)\)
\(=3(x+y)^2+2(x^2+y^2)\geq 3(x+y)^2+(x+y)^2\) (theo BĐT AM-GM)
\(\Leftrightarrow 5x^2+6xy+5y^2\geq 4(x+y)^2\Rightarrow \sqrt{5x^2+6xy+5y^2}\geq 2(x+y)\)
Thực hiện tương tự với những biểu thức còn lại suy ra:
\(P\geq \frac{2(x+y)}{x+y+2z}+\frac{2(y+z)}{y+z+2x}+\frac{2(z+x)}{z+x+2y}\)
\(P\geq 2\left(\frac{x+y}{x+y+2z}+\frac{y+z}{y+z+2x}+\frac{z+x}{z+x+2y}\right)=2\left(\frac{(x+y)^2}{(x+y+2z)(x+y)}+\frac{(y+z)^2}{(y+z+2x)(y+z)}+\frac{(z+x)^2}{(z+x+2y)(z+x)}\right)\)
Áp dụng BĐT Cauchy-Schwarz:
\(P\geq 2.\frac{(x+y+y+z+z+x)^2}{(x+y+2z)(x+y)+(y+z+2x)(y+z)+(z+x+2y)(z+x)}\)
\(\Leftrightarrow P\geq 2. \frac{4(x+y+z)^2}{2(x+y+z)^2+2(xy+yz+xz)}=\frac{4(x+y+z)^2}{(x+y+z)^2+xy+yz+xz}\)
\(\geq \frac{4(x+y+z)^2}{(x+y+z)^2+\frac{(x+y+z)^2}{3}}=3\) (theo AM-GM \(xy+yz+xz\leq \frac{(x+y+z)^2}{3}\))
Vậy \(P\geq 3\Leftrightarrow P_{\min}=3\)
Dấu bằng xảy ra khi \(x=y=z\)
Ta có: \(5x^2+6xy+5y^2=4\left(x+y\right)^2+\left(x-y\right)^2\ge4\left(x+y\right)^2\)
tương tự: \(5y^2+6yz+5z^2\ge4\left(y+z\right)^2\) ;\(5z^2+6xz+5z^2\ge4\left(x+z\right)^2\)
\(\Rightarrow P\ge\dfrac{2\left(x+y\right)}{x+y+2z}+\dfrac{2\left(y+z\right)}{y+z+2x}+\dfrac{2\left(x+z\right)}{x+z+2y}\)
\(\Leftrightarrow\dfrac{P}{2}\ge\dfrac{x+y}{x+y+2z}+\dfrac{y+z}{y+z+2x}+\dfrac{x+z}{x+z+2y}\)
\(\Leftrightarrow\dfrac{P}{2}\ge\dfrac{x+y}{\left(x+z\right)+\left(y+z\right)}+\dfrac{y+z}{\left(x+y\right)+\left(x+z\right)}+\dfrac{x+z}{\left(x+y\right)+\left(y+z\right)}\)Theo BDT Nesbit
\(\dfrac{x+y}{\left(x+z\right)+\left(y+z\right)}+\dfrac{y+z}{\left(x+y\right)+\left(x+z\right)}+\dfrac{x+z}{\left(x+y\right)+\left(y+z\right)}\ge\dfrac{3}{2}\)
Vậy \(\dfrac{P}{2}\ge\dfrac{3}{2}\Leftrightarrow P\ge3\)
Min P = 3 khi x = y = z
1: \(\Leftrightarrow\dfrac{3x-1}{x+2}=4\)
=>4x+8=3x-1
=>x=-9
2: \(\Leftrightarrow\dfrac{5x-7}{2x-1}=4\)
=>8x-4=5x-7
=>3x=-3
=>x=-1
3: ĐKXD: x>=0
\(PT\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)
=>\(x+\sqrt{x}-6=x-1\)
=>căn x=-1+6=5
=>x=25
4: ĐKXĐ: x>=0
PT =>\(\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
=>x-2*căn x-3=x-4
=>-2căn x-3=-4
=>2căn x+3=4
=>2căn x=1
=>căn x=1/2
=>x=1/4
có: ở x ta nhân cả tử và mẫu với\(\sqrt{3}+\sqrt{2}\) ta được \(x=2\left(\sqrt{3}+\sqrt{2}\right)=\sqrt{12}+\sqrt{8}\)
ở y ta nhân cả tử và mẫu với \(\sqrt{3}-\sqrt{2}\)ta được
\(y=2\left(\sqrt{3}-\sqrt{2}\right)=\sqrt{12}-\sqrt{8}\)
thay x và y vào A ta dc :
\(5\left(\sqrt{12}+\sqrt{8}\right)^2+6\left(\sqrt{12}+\sqrt{8}\right)\left(\sqrt{12}-\sqrt{8}\right)+5\left(\sqrt{12}-\sqrt{8}\right)=5\left(24+16\right)+24=224\)
mình cx ko chắc lắm ddaaau nha