K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2021

Linh tinh thui, chắc sai.

\(x+\dfrac{1}{x}=2\) (x khác 0) 

\(\Rightarrow\dfrac{x^2+1}{x}=2\Rightarrow x^2+1=2x\Rightarrow\left(x-1\right)^2=0\Rightarrow x=1\)(TM)

Thay \(x=1\) vào bt A có \(A=\dfrac{1}{2}\)

14 tháng 1 2021

Cách khác: Ta dễ dàng nhận thấy \(x\neq 0\).

\(\dfrac{1}{A}=\dfrac{x^4+1}{x^2}=x^2+\dfrac{1}{x^2}=\left(x+\dfrac{1}{x}\right)^2-2=2^2-2=2\Rightarrow A=\dfrac{1}{2}\).

1) Cho biểu thức : A=\(\dfrac{4x^2}{x^2-4}\)+\(\dfrac{1}{x+2}\)-\(\dfrac{1}{x-2}\) (Với x≠2 và x≠ -2)a.Rút gọn biểu thức A.b. Tính giá trị của biểu thức A khi x=4.2) Rút gọn biểu thức A=\(\dfrac{x}{x-1}\)+\(\dfrac{3}{x+1}\)+\(\dfrac{3-5x}{x^2-1}\) , với x≠ -1 và x≠13) Rút gọn biểu thức P=\(\dfrac{2}{x-2}\)+\(\dfrac{1}{x+2}\)\(\dfrac{6+5x}{4-x^2}\), với x≠ -2 và x≠ 24) Cho biểu thỨC : A= \(\dfrac{2x}{x^2-25}\)+\(\dfrac{5}{5-x}\)-\(\dfrac{1}{x+5}\)( với...
Đọc tiếp

1) Cho biểu thức : A=\(\dfrac{4x^2}{x^2-4}\)+\(\dfrac{1}{x+2}\)-\(\dfrac{1}{x-2}\) (Với x≠2 và x≠ -2)

a.Rút gọn biểu thức A.

b. Tính giá trị của biểu thức A khi x=4.

2) Rút gọn biểu thức A=\(\dfrac{x}{x-1}\)+\(\dfrac{3}{x+1}\)+\(\dfrac{3-5x}{x^2-1}\) , với x≠ -1 và x≠1

3) Rút gọn biểu thức P=\(\dfrac{2}{x-2}\)+\(\dfrac{1}{x+2}\)\(\dfrac{6+5x}{4-x^2}\), với x≠ -2 và x≠ 2

4) Cho biểu thỨC : A= \(\dfrac{2x}{x^2-25}\)+\(\dfrac{5}{5-x}\)-\(\dfrac{1}{x+5}\)( với x≠5 và x≠ -5)

a. Rút gọn biểu thức A 

b. Tính giá trị của biểu thức A khi x=\(\dfrac{4}{5}\).

5) Cho biểu thức : M =\(\dfrac{x^2}{x^2+2x}\)+\(\dfrac{2}{x+2}\)+\(\dfrac{2}{x}\) ( với x ≠0 và x≠ -2)

a. Rút gọn biểu thức M 

b. Tính giá trị của biểu thức M khi: x=\(-\dfrac{3}{2}\)

MN BIẾT LÀM CÂU NÀO THÌ LÀM CÂU ĐÓ CŨNG ĐƯỢC AH!

2
NV
26 tháng 12 2022

1,

\(A=\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{4x^2+x-2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x^2-4}{\left(x-2\right)\left(x+2\right)}\)

\(x=4\Rightarrow A=\dfrac{4.x^2-4}{\left(4-2\right)\left(4+2\right)}=...\)

2.

\(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3-5x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)+3-5x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)

3.

Đề lỗi, thiếu dấu trước \(\dfrac{6+5x}{4-x^2}\)

NV
26 tháng 12 2022

4.

\(A=\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{2x-5\left(x+5\right)-\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4}{x-5}\)

\(x=\dfrac{4}{5}\Rightarrow A=\dfrac{-4}{\dfrac{4}{5}-5}=\dfrac{20}{21}\)

5.

\(M=\dfrac{x^2}{x\left(x+2\right)}+\dfrac{2x}{x\left(x+2\right)}+\dfrac{2\left(x+2\right)}{x\left(x+2\right)}\)

\(=\dfrac{x^2+2x+2\left(x+2\right)}{x\left(x+2\right)}=\dfrac{x^2+4x+4}{x\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x+2}{x}\)

\(x=-\dfrac{3}{2}\Rightarrow M=\dfrac{-\dfrac{3}{2}+2}{-\dfrac{3}{2}}=-\dfrac{1}{3}\)

Đề sai rồi bạn

ĐKXĐ: x<>-2; x<>2; x<>0

 

a: \(A=\dfrac{2x+4-4}{\left(x+2\right)^2}:\dfrac{2-x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x}{\left(x+2\right)^2}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{-x}=\dfrac{-2\left(x-2\right)}{\left(x+2\right)}\)

A<=-2

=>A+2<=0

=>\(\dfrac{-2x+4+2x+4}{x+2}< =0\)

=>x+2<0

=>x<-2

b: Sửa đề: Tìm x để A là số nguyên

A là số nguyên

=>-2(x-2) chia hết cho x+2

=>-2x+4 chia hết cho x+2

=>-2x-4+8 chia hết cho x+2

=>\(x+2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

=>\(x\in\left\{-1;-3;-4;-6;6;-10\right\}\)

13 tháng 3 2021

\(P=\dfrac{x^2}{x^4+x^2+1}=\dfrac{x^2}{x^4+2x^2+1-x^2}=\dfrac{x^2}{\left(x^2+1\right)^2-x^2}=\dfrac{x^2}{\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

\(=a\cdot\dfrac{x}{x^2+x+1}\)

Có \(a=\dfrac{x}{x^2-x+1}\Rightarrow\dfrac{1}{a}=\dfrac{x^2-x+1}{x}=x+\dfrac{1}{x}-1\)

Đặt \(B=\dfrac{x}{x^2+x+1}\Rightarrow\dfrac{1}{B}=\dfrac{x^2+x+1}{x}=x+\dfrac{1}{x}+1=\dfrac{1}{a}-2\)

\(\Leftrightarrow\dfrac{1}{B}=\dfrac{1-2a}{a}\Leftrightarrow B=\dfrac{a}{1-2a}\)

Do đó \(P=a\cdot\dfrac{a}{1-2a}=\dfrac{a^2}{1-2a}\)

 

13 tháng 3 2021

Hic sao hay lỗi công thức thế :<

Do đó \(\dfrac{1}{B}=\dfrac{1-2a}{a}\Leftrightarrow B=\dfrac{a}{1-2a}\)

\(P=a\cdot\dfrac{a}{1-2a}=\dfrac{a^2}{1-2a}\)

24 tháng 5 2022

a)Vì |4x - 2| = 6 <=> 4x - 2 ϵ {6,-6} <=> x ϵ {2,-1}

Thay x = 2, ta có B không tồn tại

Thay x = -1, ta có B = \(\dfrac{1}{3}\)

b)ĐKXĐ:x ≠ 2,-2

Ta có \(A=\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}=\dfrac{10-5x+3x+6}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{16-2x}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{\left(x+2\right)\left(x-2\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{x^2-4}+\dfrac{15-x}{x^2-4}=\dfrac{x-1}{x^2-4}\)c)Từ câu b, ta có \(A=\dfrac{x-1}{x^2-4}\)\(\Rightarrow\dfrac{2A}{B}=\dfrac{\dfrac{\dfrac{2x-2}{x^2-4}}{2x+1}}{x^2-4}=\dfrac{2x-2}{2x+1}< 1\) với mọi x

Do đó không tồn tại x thỏa mãn đề bài

a: Khi x=1 thì\(P=\dfrac{1-2}{1+2}=\dfrac{-1}{2}\)

b: \(=\dfrac{3x+6+5x-6+2x^2-4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2+4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x}{x-2}\)

c: \(P=A\cdot B=\dfrac{2x}{x-2}\cdot\dfrac{x-2}{x+1}=\dfrac{2x}{x+1}\)

\(P-2=\dfrac{2x-2x-2}{x+1}=\dfrac{-2}{x+1}\)

P<=2

=>x+1>0

=>x>-1

4 tháng 1 2021

a, \(\dfrac{x^2+y^2}{4\left(x+y\right)}+\dfrac{2xy}{4\left(x+y\right)}\)=\(\dfrac{x^2+2xy+y^2}{4\left(x+y\right)}\)   = \(\dfrac{\left(x+y\right)^2}{4\left(x+y\right)}\)  =\(\dfrac{x+y}{4}\) 

a. \(\dfrac{x^2+y^2}{4\left(x+y\right)}+\dfrac{2xy}{4\left(x+y\right)}\)

\(=\dfrac{x^2+2xy+y^2}{4\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{4\left(x+y\right)}\)

\(=\dfrac{x+y}{4}\)

b. \(\dfrac{x+5}{2x-2}-\dfrac{4}{x^2-1}:\dfrac{2}{x+1}\)

\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{4}{\left(x+1\right)\left(x-1\right)}:\dfrac{2}{x+1}\)

\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{2}{x-1}\)

\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{4}{2\left(x-1\right)}\)

\(=\dfrac{x+1}{2\left(x-1\right)}\)

a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2}{x^2-4}\)