Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1)
b, Có \(x\ge0\Rightarrow B=x+\sqrt{x}+4\ge0+0+4=4\)
Dấu "=" xảy ra khi x=0
Vậy \(B_{min}=4\)
Bài 1 :
\(b,B=x+\sqrt{x}+4=x+2.\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{15}{4}\)
\(=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\)
Thấy : \(\sqrt{x}+\dfrac{1}{2}\ge\dfrac{1}{2}\)
\(\Rightarrow B=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\ge4\)
Vậy \(Min_B=4\Leftrightarrow x=0\)
Lời giải:
Áp dụng BĐT SVac-xơ:
\(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}=\frac{1}{\sqrt{x}}+\frac{9}{\sqrt{3y}}+\frac{9}{\sqrt{3y}}+\frac{9}{\sqrt{3y}}\geq \frac{(1+3+3+3)^2}{\sqrt{x}+3\sqrt{3y}}\)
\(\Leftrightarrow \frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\geq \frac{100}{x+3\sqrt{3y}}(1)\)
Áp dụng BĐT Bunhiacopxky:
\((x+3y)(1+9)\geq (\sqrt{x}+3\sqrt{3y})^2\)
\(\Rightarrow \sqrt{x}+3\sqrt{3y}\leq \sqrt{10(x+3y)}\leq 10(2)\) do \(x+3y\leq 10\)
Từ \((1);(2)\Rightarrow \frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\geq \frac{100}{x+3\sqrt{3y}}\geq \frac{100}{10}=10\) (đpcm)
Dấu bằng xảy ra khi \(\frac{\sqrt{x}}{1}=\frac{\sqrt{3y}}{3}; x+3y=10\Rightarrow x=1;y=3\)
a, Với m =1 , pt thành:
y = \(\dfrac{-2}{3}x-\dfrac{1}{3}\)(d')
Hoành độ giao điểm là nghiệm của phương trình:
\(-x+4=\dfrac{-2}{3}x-\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{-1}{3}x=\dfrac{-13}{3}\Leftrightarrow x=13\)
thay x = 13 vào (d) ta được \(y=-9\)\(\Rightarrow A\left(13;-9\right)\)
vậy điểm \(A\left(13;-9\right)\)là giao điểm của (d) và (d')
b, Gọi điểm B(x1;y1) là giao điểm của (d) và (d')
Để (d) và (d') cắt nhau tại góc phần tư thứ 1
\(\Rightarrow\left\{{}\begin{matrix}x_1>0\\y_1>0\end{matrix}\right.\) (1)
Lại có x1 là nghiệm của phương trình: \(-x_1+4=\dfrac{-2}{3}x_1+\dfrac{m}{3}\)
\(\Leftrightarrow\dfrac{-1}{3}x_1=\dfrac{m}{3}-4\) \(\Leftrightarrow x_1=-m+12\) (2)
Thay x1 = -m +12 vào (d) ta được: \(y_1=-\left(-m+12\right)+4\Leftrightarrow y_1=m-8\) (3)
Thay (2) và (3) vào hệ bất phương trình (1) ta được
\(\left\{{}\begin{matrix}-m+12>0\\m-8>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 12\\m>8\end{matrix}\right.\)\(\Leftrightarrow8< m< 12\)
Vậy \(8< m< 12\) thì (d) cắt (d') tại góc phần tư thứ 1
chúc bạn học tốt☺
b: Để (d) vuông góc với (d1) thì \(2\left(m-3\right)=-1\)
\(\Leftrightarrow m-3=-\dfrac{1}{2}\)
hay \(m=\dfrac{5}{2}\)
a) Vẽ:
(d): \(y=\dfrac{3}{2}x-1\)
(d'): \(y=\dfrac{2}{3}x+1\)
b) Tìm tọa độ giao điểm A của (d) và (d')
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{3}{2}x-1=\dfrac{2}{3}x+1\\y=\dfrac{2}{3}x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{12}{5}\\y=\dfrac{13}{5}\end{matrix}\right.\)
PT hoành độ giao điểm (d1) và (d2) là
\(\left(m-3\right)x-16=x+2\)
Thay \(x=1\Leftrightarrow m-3-16=3\Leftrightarrow m=22\)
dấu bằng xảy ra khi :
\(x+\dfrac{16}{x-2}=10\\ \Rightarrow x\left(x-2\right)+16=10x-20\\ x^2-2x+16=10x-20\\ x^2-12x+36=0\\ \left(x-6\right)^2=0\\ \Rightarrow x=6\)