K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2017

Hỏi đáp Toán

27 tháng 12 2017

Với a, b, c khác -1 thì x + y + z khác 0.
Từ đề bài ta có: y + z = ax + cz + ax + by
<=> 2ax = y + z - x
--> a = (y + z - x)/(2x) --> a + 1 = (x + y + z)/(2x)
--> 1/(1 + a) = 2x/(x + y + z)
tương tự: 1/(1 + b) = 2y/(x + y + z)
1/(1 + c) = 2z/(x + y + z)
--> 1/(1 + a) + 1/(1 + b) + 1/(1 + c) = (2x + 2y + 2z)/(x + y + z) = 2

22 tháng 10 2016

Vì \(x=by+cz\)

\(\Rightarrow by=x-cz\)

Mà \(z=ax+by\)

\(\Rightarrow by=z-ax\)

\(\Rightarrow x-cz=z-ax\left(=by\right)\)

\(\Rightarrow x+ax=z+cz\)

\(\Rightarrow x\left(a+1\right)=z\left(c+1\right)\)

Cũng có :

\(z=ax+by\)

\(\Rightarrow ax=z-by\)

\(y=ax+cz\)

\(\Rightarrow ax=y-cz\)

\(\Rightarrow z-by=y-cz\left(=ax\right)\)

\(\Rightarrow z+cz=y+by\)

\(\Rightarrow z\left(c+1\right)=y\left(b+1\right)\)

\(\Rightarrow x\left(a+1\right)=y\left(b+1\right)=z\left(c+1\right)\)

Đặt \(x\left(a+1\right)=y\left(b+1\right)=z\left(c+1\right)=k\)

\(\Rightarrow3k=x\left(a+1\right)+y\left(b+1\right)+z\left(c+1\right)\)

Có :

\(Q=\frac{1}{a+1}+\frac{1}{1+b}+\frac{1}{c+1}\)

\(=\frac{x}{x\left(a+1\right)}+\frac{y}{y\left(b+1\right)}+\frac{z}{z\left(c+1\right)}\)

\(=\frac{x}{k}+\frac{y}{k}+\frac{z}{k}\)

\(=\frac{x+y+z}{k}\)

\(=\frac{3\left(x+y+z\right)}{3k}\)

Mà \(3k=x\left(a+1\right)+y\left(b+1\right)+z\left(c+1\right)\)

\(\Rightarrow Q=\frac{3\left(x+y+z\right)}{x\left(a+1\right)+y\left(b+1\right)+z\left(c+1\right)}\)

\(=\frac{3\left(x+y+z\right)}{xa+x+by+y+zc+z}\)

\(=\frac{3\left(x+y+z\right)}{\left(x+y+z\right)+\left(xa+by+zc\right)}\)

\(=\frac{3\left(x+y+z\right)}{\left(x+y+z\right)+\frac{1}{2}\left[\left(xa+by\right)+\left(xa+zc\right)+\left(by+zc\right)\right]}\)

Có \(x+y+z=\left(ax+by\right)+\left(by+cz\right)+\left(ax+cz\right)\)

\(\Rightarrow Q=\frac{3\left(x+y+z\right)}{\left(x+y+z\right)+\frac{1}{2}\left(x+y+z\right)}\)

\(=\frac{3\left(x+y+z\right)}{\frac{3}{2}\left(x+y+z\right)}\)

\(=\frac{3}{\frac{3}{2}}\)

\(=2\)

Vậy \(Q=2.\)

29 tháng 3 2017

Tim x toa man: |x-22|+|x-3|+|x-2017|=2014

12 tháng 12 2016

Với a, b, c khác -1 thì x + y + z khác 0.
Từ đề bài ta có: y + z = ax + cz + ax + by
<=> 2ax = y + z - x
--> a = (y + z - x)/(2x) --> a + 1 = (x + y + z)/(2x)
--> 1/(1 + a) = 2x/(x + y + z)
tương tự: 1/(1 + b) = 2y/(x + y + z)
1/(1 + c) = 2z/(x + y + z)
--> 1/(1 + a) + 1/(1 + b) + 1/(1 + c) = (2x + 2y + 2z)/(x + y + z) = 2

vậy giá trị của biểu thức A= 2

27 tháng 7 2018

1 la sai ; 2 cung sai ; xin loi cho ming ting xiu ; aaaaa! 3 la ......................................sai; chan chan 4 la ..............................................................................................d...........................sai ; 1000000000000000000000000000000000000000000000000000000000000000000000000000 la ..................................................................................................sai

27 tháng 7 2018

x+y+z=0 sao tính được. sửa đề: x+y+z khác 0

Ta có: \(x+y=by+cz+ax+cz=2cz+z\Leftrightarrow2cz=x+y-z\Leftrightarrow c=\frac{x+y-z}{2z}\Leftrightarrow c+1=\frac{x+y+z}{2z}\Leftrightarrow\frac{1}{c+1}=\frac{2z}{x+y+z}\left(1\right)\)

Tương tự, ta có: \(\frac{1}{a+1}=\frac{2x}{x+y+z}\left(2\right);\frac{1}{b+1}=\frac{2y}{x+y+z}\left(3\right)\)

Cộng (1),(2),(3) vế với vế ta được:

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) hay Q = 2

Vậy Q=2

2 tháng 12 2016

cộng 3 cái lại nhe bạn =))

2 tháng 12 2016

Có nhiều cách làm bài này.

Có \(2a+2b+2c=by+cz+a.x+cz+a.x+by\)

\(2\left(a+b+c\right)=2\left(a.x+by+cz\right)\)

\(\Rightarrow a+b+c=a.x+by+cz\)

  • \(a+b+c=a.x+\left(by+cz\right)=a.x+2.a=a\left(x+2\right)\)

\(\Rightarrow\frac{1}{x+2}=\frac{a}{a+b+c}\)

  • \(a+b+c=\left(a.x+by\right)+cz=2c+cz=c\left(z+2\right)\)

\(\Rightarrow\frac{1}{z+2}=\frac{c}{a+b+c}\)

  • \(a+b+c=by+\left(a.x+cz\right)=by+2b=b\left(y+2\right)\)

\(\Rightarrow\frac{1}{y+2}=\frac{b}{a+b+c}\)

\(\Rightarrow M=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{a+b+c}{a+b+c}=1\)

Vậy ...

14 tháng 11 2018

Ta có : \(y+z=ax+cz+ax+by=2ax+x\)

\(\Rightarrow\)\(y+z-x=2ax\)\(\Rightarrow\)\(a=\frac{y+z-x}{2x}\)\(\Rightarrow\)\(\frac{1}{a+1}=\frac{2x}{x+y+z}\)

Tương tự, ta cũng có \(\frac{1}{b+1}=\frac{2y}{x+y+z};\frac{1}{c+1}=\frac{2z}{x+y+z}\)

\(\Rightarrow\)\(S=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Chúc bạn học tốt ~ 

5 tháng 9 2016

Ta có : \(\begin{cases}x=by+cz\\y=ax+cz\\z=ax+by\end{cases}\) . Cộng các đẳng thức trên theo vế :

\(x+y+z=2\left(ax+by+cz\right)\Rightarrow\frac{x+y+z}{ax+by+cz}=2\)

Lại có : \(y=ax+cz\Rightarrow a=\frac{y-cz}{x}\Rightarrow a+1=\frac{x+y-cz}{x}\Rightarrow\frac{1}{a+1}=\frac{x}{x+y-cz}=\frac{x}{ax+by+cz}\)

Tương tự : \(\frac{1}{b+1}=\frac{y}{ax+by+cz};\frac{1}{c+1}=\frac{z}{ax+by+cz}\)

\(\Rightarrow P=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{x}{ax+by+cz}+\frac{y}{ax+by+cz}+\frac{z}{ax+by+cz}\)

\(=\frac{x+y+z}{ax+by+cz}=2\)

5 tháng 9 2016

Ta có : \(\begin{cases}x=by+cz\\y=ax+cz\\z=ax+by\end{cases}\) . Cộng các đẳng thức trên theo vế : 

\(x+y+z=2\left(ax+by+cz\right)\)\(\Rightarrow\frac{x+y+z}{ax+by+cz}=2\)

Ta có : \(y=ax+cz\Rightarrow a=\frac{y-cz}{x}\Rightarrow a+1=\frac{x+y-cz}{x}\Rightarrow\frac{1}{a+1}=\frac{x}{x+y-cz}\)

\(\Rightarrow\frac{1}{a+1}=\frac{x}{ax+by+cz}\)

\(\Rightarrow P=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{x+y+z}{ax+by+cz}=2\)

Tương tự : \(\frac{1}{b+1}=\frac{y}{ax+by+cz}\) ; \(\frac{1}{c+1}=\frac{z}{ax+by+cz}\)

 

 

12 tháng 3 2021

Ta có:

\(2a+2b+2c=by+cz+ax+cz+ax+by\)

\(\Leftrightarrow a+b+c=ax+by+cz\)

\(\Rightarrow a+b+c=ax+2a;a+b+c=by+2b;a+b+c=cz+2c\)

\(\Leftrightarrow\frac{1}{x+2}=\frac{a}{a+b+c};\frac{1}{y+2}=\frac{b}{a+b+c};\frac{1}{z+2}=\frac{c}{a+b+c}\)

\(\Rightarrow A=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

12 tháng 3 2021

Ta có:\(\hept{\begin{cases}2a=by+cz\\2b=ax+cz\\2c=ax+by\end{cases}}\)

\(\Leftrightarrow2a+2b+2c=by+cz+ax+cz+ax+by\)

\(\Leftrightarrow2a+2b+2c=2ax+2by+2cz\)

\(\Leftrightarrow2a+2b+2c-2ax-2by-2cz=0\)

\(\Leftrightarrow\left(2a-2ax\right)+\left(2b-2by\right)+\left(2c-2cz\right)=0\)

\(\Leftrightarrow2a\left(1-x\right)+2b\left(1-y\right)+2c\left(1-z\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}1-x=0\\1-y=0\\1-z=0\end{cases}\Leftrightarrow x=y=z=1}\)

\(\Rightarrow A=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{1}{1+2}+\frac{1}{1+2}+\frac{1}{1+2}=1\)

18 tháng 6 2017

x=by+cz,y=ax+cz,z=ax+by

=>x+y+z=2(ax+by+cz) (1)

Thay z=ax+by vào (1) ta có :

x+y+z=2(z+cz)=2z(c+1)

\(=>\frac{1}{c+1}=\frac{2z}{x+y+z}\)

Tương tự ta có : \(\frac{1}{a+1}=\frac{2x}{x+y+z},\frac{1}{b+1}=\frac{2y}{x+y+z}\)

=>Q=\(\frac{2\left(x+y+z\right)}{x+y+z}=2\)