\(x^6+y^6+z^6=3\) và \(x;y;z>0\) 

Chứng minh...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

Áp dụng BĐT cosi ta có:

`x^6+y^6+z^6>=3root{3}{x^6y^6z^6}=3x^2y^2z^2`

`=>3x^2y^2z^2<=3`

`=>x^2y^2z^2<=1`

`=>xyz<=1`

`=>(x^3)/(yz)+(y^3)/(zx)+(z^3)/(xy)`

`=(x^4)/(xyz)+(y^4)/(xyz)+(z^4)/(xyz)>=x^4+y^4+z^4(@)`

Áp dụng BĐT bunhia với 2 cặp số `(x^2,y^2,z^2),(x,y,z)`

`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=(x^3+y^3+z^3)^3`

Mà `(x^3+y^3+z^3)^2>=3(x^3y^3+y^3z^3+z^3x^3)`

`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=3(x^3y^3+y^3z^3+z^3x^3)(@@)`

Áp dụng BĐT cosi ta có:

`x^6+1+1>=3root{3}{x^6}=3x^2`

`y^6+1+1>=3y^2`

`z^6+1+1>=3z^2`

`=>x^6+y^6+z^6+6>=3(x^2+y^2+z^2)`

`=>9>=3(x^2+y^2+z^2)`

`=>x^2+y^2+z^2<=3`

Kết hợp với `(@@)`

`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=(x^2+y^2+z^2)(x^3y^3+y^3z^3+z^3x^3)`

`=>x^4+y^4+z^4>=x^3y^3+y^3z^3+z^3x^3`

Kếp hợp với `(@)`

`=>(x^3)/(yz)+(y^3)/(zx)+(z^3)/(xy)>=x^3y^3+y^3z^3+z^3x^3`

Dấu = xảy ra khi `x=y=z=1`

28 tháng 2 2021

Học tốt nha ~.~

1 tháng 3 2019

Đặt \(x^3=a,y^3=b,z^3=c\Rightarrow abc=1\)

\(P=\dfrac{a^3+b^3}{a^2+ab+b^2}+\dfrac{b^3+c^3}{b^2+bc+c^2}+\dfrac{c^3+a^3}{c^2+ca+a^2}\)

Ta chứng minh bổ đề sau

\(\dfrac{a^3+b^3}{a^2+ab+b^2}\ge\dfrac{a+b}{3}\)

\(\Leftrightarrow3\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+ab+b^2\right)\)

\(\Leftrightarrow3\left(a^3+b^3\right)\ge a^3+2ab^2+2a^2b+b^3\)

\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)

Bất đẳng thức cuối luôn đúng. Sử dụng bổ đề ta được

\(P\ge\dfrac{a+b}{3}+\dfrac{b+c}{3}+\dfrac{c+a}{3}=\dfrac{2\left(a+b+c\right)}{3}\ge\dfrac{2.3\sqrt[3]{abc}}{3}=2\)

2 tháng 1 2018

Ta có : Áp dụng BĐT Cauchy ba số ở mẫu ta được

\(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\dfrac{x}{\dfrac{y+z+1}{3}}+\dfrac{y}{\dfrac{x+z+1}{3}}+\dfrac{z}{\dfrac{x+y+1}{3}}=\dfrac{3x}{y+z+1}+\dfrac{3y}{x+z+1}+\dfrac{3z}{x+y+1}\)Thấy: \(xy+yz+xz\le\dfrac{\left(x+y+z\right)^2}{3}\left(?!\right)\)

Ta phải chứng minh:

\(\dfrac{3x}{y+z+1}+\dfrac{3y}{x+z+1}+\dfrac{3z}{x+y+1}\ge\dfrac{\left(x+y+z\right)^2}{3}\)

\(\dfrac{x}{y+z+1}+\dfrac{y}{x+z+1}+\dfrac{z}{x+y+1}\ge\dfrac{\left(x+y+z\right)^2}{9}\)

\(\dfrac{x}{y+z+1}+\dfrac{y}{x+z+1}+\dfrac{z}{x+y+1}=\dfrac{x^2}{xy+xz+x}+\dfrac{y^2}{xy+yz+y}+\dfrac{z^2}{xz+yz+z}\)

Theo C.B.S

\(\dfrac{x^2}{xy+xz+x}+\dfrac{y^2}{xy+yz+y}+\dfrac{z^2}{xz+yz+z}\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)

Phải chứng minh

\(\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{\left(x+y+z\right)^2}{9}\)

\(\Leftrightarrow\dfrac{1}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{1}{9}\)

Ta có : \(xy+yz+xz\le x^2+y^2+z^2=3\)

Theo C.B.S : \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)

\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le9\)

\(\Rightarrow\dfrac{1}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{1}{9}\)

=> ĐPCM

6 tháng 8 2018

Áp dụng BĐT AM-GM, Ta có

\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\Rightarrow yz\sqrt{x-1}\le\dfrac{xyz}{2}\)

\(xz\sqrt{y-2}\le\dfrac{xz\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\)

\(yx\sqrt{z-3}\le yx.\dfrac{3+z-3}{2\sqrt{3}}=\dfrac{xyz}{2\sqrt{3}}\)

\(\Rightarrow\dfrac{xy\sqrt{x-1}+xz\sqrt{y-2}+yz\sqrt{z-3}}{xyz}\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{1}{2}+\dfrac{\sqrt{2}}{4}+\dfrac{\sqrt{3}}{6}\)

10 tháng 5 2018

\(\text{Cho 3 số dương x, y, z thỏa mãn }x+y+z=3\)

\(\text{Chứng minh rằng }T=\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)

➤➤➤Chứng minh:

➢ Áp dụng bất đẳng thức AM - GM

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}\left(\text{vì }x+y+z=3\right)=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}=\dfrac{x}{x+\sqrt{xz}+\sqrt{xy}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

➢ Tương tự:

\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

➢ Công vế theo vế 3 bất đẳng thức cùng chiều

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

\(\text{Đẳng thức xảy ra khi }x=y=z=1\)

\(Max_T=1\Leftrightarrow x=y=z=1\)

AH
Akai Haruma
Giáo viên
16 tháng 3 2018

Lời giải:

Phải thêm điều kiện \(x,y,z>0\) nữa em nhé. Nếu không bài toán sai ngay với \(x=y=z=-1\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\text{VT}=\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{x+3y}=\frac{(x^2)^2}{y+3z}+\frac{(y^2)^2}{z+3x}+\frac{(z^2)^2}{x+3y}\)

\(\geq \frac{(x^2+y^2+z^2)^2}{y+3z+z+3x+x+3y}=\frac{(x^2+y^2+z^2)^2}{4(x+y+z)}(1)\)

Áp dụng BĐT Bunhiacopxky: \((x^2+y^2+z^2)(1+1+1)\geq (x+y+z)^2\)

\(\Rightarrow \sqrt{3(x^2+y^2+z^2)}\geq x+y+z(2)\)

Từ \((1); (2)\Rightarrow \text{VT}\geq \frac{(x^2+y^2+z^2)^2}{4\sqrt{3(x^2+y^2+z^2)}}=\frac{\sqrt{(x^2+y^2+z^2)^3}}{4\sqrt{3}}\)

Theo hệ quả của BĐT AM-GM \(x^2+y^2+z^2\geq xy+yz+xz\geq 3\)

Suy ra \(\text{VT}\geq \frac{\sqrt{3^3}}{4\sqrt{3}}=\frac{3}{4}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=1\)

5 tháng 3 2019

\(\sum\frac{x}{x+\sqrt{3x+yz}}=\sum\frac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)

Sử dụng BĐT Cauchy-Schwarz, ta có

\(\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\le\sum\frac{x}{x+\sqrt{\left(\sqrt{xy}+\sqrt{xz}\right)^2}}\)

\(=\sum\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\sum\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

27 tháng 2 2018

nhầm đề không?

(tớ thấy lạ nên hỏi vậy thôi chứ không chắc là làm được)

27 tháng 2 2018

ko nhầm đề đâu

bạn cố gắng nghĩ hộ mình nha eoeo