![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1: Tự làm :D
Câu 2: \(A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)
Đẳng thức xảy ra khi x = y = 2
Vậy...
Câu 3:
a) Trùng với câu 2
b) ĐK:x khác -1
\(B=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}\)
\(=\frac{3}{x^2+1}\le\frac{3}{0+1}=3\)
Đẳng thức xảy ra khi x = 0
Làm nốt cái câu 1 và đầy đủ cái câu 2:v
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
Làm nốt nha.Lười quá:((
2
\(A=x^2-2xy+2y^2-4y+5\)
\(A=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)
\(A=\left(x-y\right)^2+\left(y-2\right)^2+1\)
\(A\ge1\)
Dấu "=" xảy ra tại \(x=y=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
(x3 - 4y)(x2 - 2xy + 4y)(x2 + 2xy + 4y) tại x = -2; y = 1/2
Thay x = -2; y = 1/2 vào biểu thức, ta có:
[(-2)3 - 4.(1/2)].[(-2)2 - 2.(-2).(1/2) + 4.(1/2)].[(-2)2 + 2.(-2).(1/2) + 4.(1/2)]
= -10.8.4
= -320
Vậy:..
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(25x^2+16y^2=50xy\)
\(\Leftrightarrow\) \(\left(5x+4y\right)^2-40xy=50xy\)
\(\Leftrightarrow\) \(\left(5x+4y\right)^2=90xy\)
Mặt khác, ta cũng có: \(25x^2+16y^2=50xy\)
\(\Leftrightarrow\) \(\left(5x-4y\right)^2=10xy\)
Do đó:
\(P^2=\frac{\left(5x-4y\right)^2}{\left(5x+4y\right)^2}=\frac{10xy}{90xy}=\frac{1}{9}\)
Vậy, \(P'=\frac{1+\frac{1}{9}}{1-\frac{1}{9}}=1\frac{1}{4}\)
1)
\(25x^2-40xy+16y^2=10xy\Leftrightarrow\left(5x-4y\right)^2=10xy\)
\(25x^2+40xy+16y^2=10xy\Leftrightarrow\left(5x+4y\right)^2=90xy\)
\(P^2=\frac{1}{9}\Leftrightarrow Q=\frac{1+P^2}{1-P^2}=\frac{1+\frac{1}{81}}{1-\frac{1}{81}}=\frac{82}{80}=\frac{41}{40}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt x - y = z suy ra x = z + y
Ta có x2 + 4y2 = 1
<=> (z + y)2 + 4y2 - 1 = 0
<=> z2 + 2zy + y2 + 4y2 - 1 = 0
<=> 5y2 + 2zy + z2 - 1 = 0
Đenta = (2z)2 - 4.5.(z2 - 1) = 4z2 - 20z2 + 20 = -16z2 + 20
Để phương trình có nghiệm thì đen-ta phải lớn hơn hoặc bằng 0
=> -16z2 + 20 >= 0
<=> 16z2 - 20 <= 0 (nhân 2 vế với -1 thì đổi chiều)
<=> 4z2 - 5 <= 0
<=> 4z2 <= 5
<=> z2 <= 5/4
<=> vz2 <= v(5/4)
<=> |z| <= v5/2
<=> |x-y| <= v5/2 (điều phải chứng minh)
(v là kí hiệu của dấu căn nhé :*)
Vì x+4y=1 nên \(x^2+4y^2\ge1\)với mọi x , y
Mà 1 > \(\frac{1}{5}\)
\(\Rightarrow\)\(x^2+4y^2>\frac{1}{5}\)vơi mọi x,y